Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abelthlem1 | Structured version Visualization version GIF version |
Description: Lemma for abelth 23999. (Contributed by Mario Carneiro, 1-Apr-2015.) |
Ref | Expression |
---|---|
abelth.1 | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
abelth.2 | ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
abelthlem1 | ⊢ (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abs1 13885 | . 2 ⊢ (abs‘1) = 1 | |
2 | eqid 2610 | . . 3 ⊢ (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛)))) = (𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛)))) | |
3 | abelth.1 | . . 3 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
4 | eqid 2610 | . . 3 ⊢ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) = sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
5 | 1cnd 9935 | . . 3 ⊢ (𝜑 → 1 ∈ ℂ) | |
6 | 3 | feqmptd 6159 | . . . . . . 7 ⊢ (𝜑 → 𝐴 = (𝑛 ∈ ℕ0 ↦ (𝐴‘𝑛))) |
7 | 3 | ffvelrnda 6267 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → (𝐴‘𝑛) ∈ ℂ) |
8 | 7 | mulid1d 9936 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · 1) = (𝐴‘𝑛)) |
9 | 8 | mpteq2dva 4672 | . . . . . . 7 ⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1)) = (𝑛 ∈ ℕ0 ↦ (𝐴‘𝑛))) |
10 | 6, 9 | eqtr4d 2647 | . . . . . 6 ⊢ (𝜑 → 𝐴 = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1))) |
11 | ax-1cn 9873 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
12 | oveq1 6556 | . . . . . . . . . . 11 ⊢ (𝑧 = 1 → (𝑧↑𝑛) = (1↑𝑛)) | |
13 | nn0z 11277 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℕ0 → 𝑛 ∈ ℤ) | |
14 | 1exp 12751 | . . . . . . . . . . . 12 ⊢ (𝑛 ∈ ℤ → (1↑𝑛) = 1) | |
15 | 13, 14 | syl 17 | . . . . . . . . . . 11 ⊢ (𝑛 ∈ ℕ0 → (1↑𝑛) = 1) |
16 | 12, 15 | sylan9eq 2664 | . . . . . . . . . 10 ⊢ ((𝑧 = 1 ∧ 𝑛 ∈ ℕ0) → (𝑧↑𝑛) = 1) |
17 | 16 | oveq2d 6565 | . . . . . . . . 9 ⊢ ((𝑧 = 1 ∧ 𝑛 ∈ ℕ0) → ((𝐴‘𝑛) · (𝑧↑𝑛)) = ((𝐴‘𝑛) · 1)) |
18 | 17 | mpteq2dva 4672 | . . . . . . . 8 ⊢ (𝑧 = 1 → (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1))) |
19 | nn0ex 11175 | . . . . . . . . 9 ⊢ ℕ0 ∈ V | |
20 | 19 | mptex 6390 | . . . . . . . 8 ⊢ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1)) ∈ V |
21 | 18, 2, 20 | fvmpt 6191 | . . . . . . 7 ⊢ (1 ∈ ℂ → ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘1) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1))) |
22 | 11, 21 | ax-mp 5 | . . . . . 6 ⊢ ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘1) = (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · 1)) |
23 | 10, 22 | syl6eqr 2662 | . . . . 5 ⊢ (𝜑 → 𝐴 = ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘1)) |
24 | 23 | seqeq3d 12671 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐴) = seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘1))) |
25 | abelth.2 | . . . 4 ⊢ (𝜑 → seq0( + , 𝐴) ∈ dom ⇝ ) | |
26 | 24, 25 | eqeltrrd 2689 | . . 3 ⊢ (𝜑 → seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘1)) ∈ dom ⇝ ) |
27 | 2, 3, 4, 5, 26 | radcnvle 23978 | . 2 ⊢ (𝜑 → (abs‘1) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
28 | 1, 27 | syl5eqbrr 4619 | 1 ⊢ (𝜑 → 1 ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , ((𝑧 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑧↑𝑛))))‘𝑟)) ∈ dom ⇝ }, ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 {crab 2900 class class class wbr 4583 ↦ cmpt 4643 dom cdm 5038 ⟶wf 5800 ‘cfv 5804 (class class class)co 6549 supcsup 8229 ℂcc 9813 ℝcr 9814 0cc0 9815 1c1 9816 + caddc 9818 · cmul 9820 ℝ*cxr 9952 < clt 9953 ≤ cle 9954 ℕ0cn0 11169 ℤcz 11254 seqcseq 12663 ↑cexp 12722 abscabs 13822 ⇝ cli 14063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-addf 9894 ax-mulf 9895 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-fal 1481 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-ico 12052 df-icc 12053 df-fz 12198 df-fzo 12335 df-fl 12455 df-seq 12664 df-exp 12723 df-hash 12980 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-limsup 14050 df-clim 14067 df-rlim 14068 df-sum 14265 |
This theorem is referenced by: abelthlem3 23991 abelth 23999 |
Copyright terms: Public domain | W3C validator |