MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  4sqlem15 Structured version   Visualization version   GIF version

Theorem 4sqlem15 15501
Description: Lemma for 4sq 15506. (Contributed by Mario Carneiro, 16-Jul-2014.) (Revised by AV, 14-Sep-2020.)
Hypotheses
Ref Expression
4sq.1 𝑆 = {𝑛 ∣ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℤ 𝑛 = (((𝑥↑2) + (𝑦↑2)) + ((𝑧↑2) + (𝑤↑2)))}
4sq.2 (𝜑𝑁 ∈ ℕ)
4sq.3 (𝜑𝑃 = ((2 · 𝑁) + 1))
4sq.4 (𝜑𝑃 ∈ ℙ)
4sq.5 (𝜑 → (0...(2 · 𝑁)) ⊆ 𝑆)
4sq.6 𝑇 = {𝑖 ∈ ℕ ∣ (𝑖 · 𝑃) ∈ 𝑆}
4sq.7 𝑀 = inf(𝑇, ℝ, < )
4sq.m (𝜑𝑀 ∈ (ℤ‘2))
4sq.a (𝜑𝐴 ∈ ℤ)
4sq.b (𝜑𝐵 ∈ ℤ)
4sq.c (𝜑𝐶 ∈ ℤ)
4sq.d (𝜑𝐷 ∈ ℤ)
4sq.e 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.f 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.g 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.h 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sq.r 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
4sq.p (𝜑 → (𝑀 · 𝑃) = (((𝐴↑2) + (𝐵↑2)) + ((𝐶↑2) + (𝐷↑2))))
Assertion
Ref Expression
4sqlem15 ((𝜑𝑅 = 𝑀) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0) ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
Distinct variable groups:   𝑤,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛   𝑛,𝐸   𝑛,𝐺   𝑛,𝐻   𝐴,𝑛   𝐶,𝑛   𝐷,𝑛   𝑛,𝐹   𝑖,𝑛,𝑀   𝑛,𝑁   𝑃,𝑖,𝑛   𝜑,𝑛   𝑆,𝑖,𝑛   𝑅,𝑖
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐴(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐵(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐶(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐷(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑃(𝑥,𝑦,𝑧,𝑤)   𝑅(𝑥,𝑦,𝑧,𝑤,𝑛)   𝑆(𝑥,𝑦,𝑧,𝑤)   𝑇(𝑥,𝑦,𝑧,𝑤,𝑖,𝑛)   𝐸(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐹(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐺(𝑥,𝑦,𝑧,𝑤,𝑖)   𝐻(𝑥,𝑦,𝑧,𝑤,𝑖)   𝑀(𝑥,𝑦,𝑧,𝑤)   𝑁(𝑥,𝑦,𝑧,𝑤,𝑖)

Proof of Theorem 4sqlem15
StepHypRef Expression
1 4sq.m . . . . . . . . . . . . 13 (𝜑𝑀 ∈ (ℤ‘2))
2 eluz2nn 11602 . . . . . . . . . . . . 13 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
31, 2syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ)
43nnred 10912 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
54resqcld 12897 . . . . . . . . . 10 (𝜑 → (𝑀↑2) ∈ ℝ)
65rehalfcld 11156 . . . . . . . . 9 (𝜑 → ((𝑀↑2) / 2) ∈ ℝ)
76rehalfcld 11156 . . . . . . . 8 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℝ)
87recnd 9947 . . . . . . 7 (𝜑 → (((𝑀↑2) / 2) / 2) ∈ ℂ)
9 4sq.a . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
10 4sq.e . . . . . . . . . . . 12 𝐸 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
119, 3, 104sqlem5 15484 . . . . . . . . . . 11 (𝜑 → (𝐸 ∈ ℤ ∧ ((𝐴𝐸) / 𝑀) ∈ ℤ))
1211simpld 474 . . . . . . . . . 10 (𝜑𝐸 ∈ ℤ)
13 zsqcl 12796 . . . . . . . . . 10 (𝐸 ∈ ℤ → (𝐸↑2) ∈ ℤ)
1412, 13syl 17 . . . . . . . . 9 (𝜑 → (𝐸↑2) ∈ ℤ)
1514zred 11358 . . . . . . . 8 (𝜑 → (𝐸↑2) ∈ ℝ)
1615recnd 9947 . . . . . . 7 (𝜑 → (𝐸↑2) ∈ ℂ)
17 4sq.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
18 4sq.f . . . . . . . . . . . 12 𝐹 = (((𝐵 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
1917, 3, 184sqlem5 15484 . . . . . . . . . . 11 (𝜑 → (𝐹 ∈ ℤ ∧ ((𝐵𝐹) / 𝑀) ∈ ℤ))
2019simpld 474 . . . . . . . . . 10 (𝜑𝐹 ∈ ℤ)
21 zsqcl 12796 . . . . . . . . . 10 (𝐹 ∈ ℤ → (𝐹↑2) ∈ ℤ)
2220, 21syl 17 . . . . . . . . 9 (𝜑 → (𝐹↑2) ∈ ℤ)
2322zred 11358 . . . . . . . 8 (𝜑 → (𝐹↑2) ∈ ℝ)
2423recnd 9947 . . . . . . 7 (𝜑 → (𝐹↑2) ∈ ℂ)
258, 8, 16, 24addsub4d 10318 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐸↑2) + (𝐹↑2))) = (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))))
266recnd 9947 . . . . . . . 8 (𝜑 → ((𝑀↑2) / 2) ∈ ℂ)
27262halvesd 11155 . . . . . . 7 (𝜑 → ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) = ((𝑀↑2) / 2))
2827oveq1d 6564 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐸↑2) + (𝐹↑2))) = (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
2925, 28eqtr3d 2646 . . . . 5 (𝜑 → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
3029adantr 480 . . . 4 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
315recnd 9947 . . . . . . . . . 10 (𝜑 → (𝑀↑2) ∈ ℂ)
32312halvesd 11155 . . . . . . . . 9 (𝜑 → (((𝑀↑2) / 2) + ((𝑀↑2) / 2)) = (𝑀↑2))
3332adantr 480 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) + ((𝑀↑2) / 2)) = (𝑀↑2))
344recnd 9947 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℂ)
3534sqvald 12867 . . . . . . . . . 10 (𝜑 → (𝑀↑2) = (𝑀 · 𝑀))
3635adantr 480 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (𝑀↑2) = (𝑀 · 𝑀))
37 4sq.r . . . . . . . . . . 11 𝑅 = ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀)
38 simpr 476 . . . . . . . . . . 11 ((𝜑𝑅 = 𝑀) → 𝑅 = 𝑀)
3937, 38syl5eqr 2658 . . . . . . . . . 10 ((𝜑𝑅 = 𝑀) → ((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) = 𝑀)
4039oveq1d 6564 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) · 𝑀) = (𝑀 · 𝑀))
4115, 23readdcld 9948 . . . . . . . . . . . . 13 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℝ)
42 4sq.c . . . . . . . . . . . . . . . . . 18 (𝜑𝐶 ∈ ℤ)
43 4sq.g . . . . . . . . . . . . . . . . . 18 𝐺 = (((𝐶 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4442, 3, 434sqlem5 15484 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐺 ∈ ℤ ∧ ((𝐶𝐺) / 𝑀) ∈ ℤ))
4544simpld 474 . . . . . . . . . . . . . . . 16 (𝜑𝐺 ∈ ℤ)
46 zsqcl 12796 . . . . . . . . . . . . . . . 16 (𝐺 ∈ ℤ → (𝐺↑2) ∈ ℤ)
4745, 46syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐺↑2) ∈ ℤ)
4847zred 11358 . . . . . . . . . . . . . 14 (𝜑 → (𝐺↑2) ∈ ℝ)
49 4sq.d . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ℤ)
50 4sq.h . . . . . . . . . . . . . . . . . 18 𝐻 = (((𝐷 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
5149, 3, 504sqlem5 15484 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐻 ∈ ℤ ∧ ((𝐷𝐻) / 𝑀) ∈ ℤ))
5251simpld 474 . . . . . . . . . . . . . . . 16 (𝜑𝐻 ∈ ℤ)
53 zsqcl 12796 . . . . . . . . . . . . . . . 16 (𝐻 ∈ ℤ → (𝐻↑2) ∈ ℤ)
5452, 53syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (𝐻↑2) ∈ ℤ)
5554zred 11358 . . . . . . . . . . . . . 14 (𝜑 → (𝐻↑2) ∈ ℝ)
5648, 55readdcld 9948 . . . . . . . . . . . . 13 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℝ)
5741, 56readdcld 9948 . . . . . . . . . . . 12 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
5857recnd 9947 . . . . . . . . . . 11 (𝜑 → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) ∈ ℂ)
593nnne0d 10942 . . . . . . . . . . 11 (𝜑𝑀 ≠ 0)
6058, 34, 59divcan1d 10681 . . . . . . . . . 10 (𝜑 → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) · 𝑀) = (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
6160adantr 480 . . . . . . . . 9 ((𝜑𝑅 = 𝑀) → (((((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) / 𝑀) · 𝑀) = (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))))
6236, 40, 613eqtr2rd 2651 . . . . . . . 8 ((𝜑𝑅 = 𝑀) → (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2))) = (𝑀↑2))
6333, 62oveq12d 6567 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) + ((𝑀↑2) / 2)) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((𝑀↑2) − (𝑀↑2)))
6441recnd 9947 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ∈ ℂ)
6556recnd 9947 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ∈ ℂ)
6626, 26, 64, 65addsub4d 10318 . . . . . . . 8 (𝜑 → ((((𝑀↑2) / 2) + ((𝑀↑2) / 2)) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))))
6766adantr 480 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) + ((𝑀↑2) / 2)) − (((𝐸↑2) + (𝐹↑2)) + ((𝐺↑2) + (𝐻↑2)))) = ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))))
6831subidd 10259 . . . . . . . 8 (𝜑 → ((𝑀↑2) − (𝑀↑2)) = 0)
6968adantr 480 . . . . . . 7 ((𝜑𝑅 = 𝑀) → ((𝑀↑2) − (𝑀↑2)) = 0)
7063, 67, 693eqtr3d 2652 . . . . . 6 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0)
716, 41resubcld 10337 . . . . . . . 8 (𝜑 → (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) ∈ ℝ)
729, 3, 104sqlem7 15486 . . . . . . . . . . 11 (𝜑 → (𝐸↑2) ≤ (((𝑀↑2) / 2) / 2))
7317, 3, 184sqlem7 15486 . . . . . . . . . . 11 (𝜑 → (𝐹↑2) ≤ (((𝑀↑2) / 2) / 2))
7415, 23, 7, 7, 72, 73le2addd 10525 . . . . . . . . . 10 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
7574, 27breqtrd 4609 . . . . . . . . 9 (𝜑 → ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2))
766, 41subge0d 10496 . . . . . . . . 9 (𝜑 → (0 ≤ (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) ↔ ((𝐸↑2) + (𝐹↑2)) ≤ ((𝑀↑2) / 2)))
7775, 76mpbird 246 . . . . . . . 8 (𝜑 → 0 ≤ (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))))
786, 56resubcld 10337 . . . . . . . 8 (𝜑 → (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) ∈ ℝ)
7942, 3, 434sqlem7 15486 . . . . . . . . . . 11 (𝜑 → (𝐺↑2) ≤ (((𝑀↑2) / 2) / 2))
8049, 3, 504sqlem7 15486 . . . . . . . . . . 11 (𝜑 → (𝐻↑2) ≤ (((𝑀↑2) / 2) / 2))
8148, 55, 7, 7, 79, 80le2addd 10525 . . . . . . . . . 10 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ≤ ((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)))
8281, 27breqtrd 4609 . . . . . . . . 9 (𝜑 → ((𝐺↑2) + (𝐻↑2)) ≤ ((𝑀↑2) / 2))
836, 56subge0d 10496 . . . . . . . . 9 (𝜑 → (0 ≤ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) ↔ ((𝐺↑2) + (𝐻↑2)) ≤ ((𝑀↑2) / 2)))
8482, 83mpbird 246 . . . . . . . 8 (𝜑 → 0 ≤ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
85 add20 10419 . . . . . . . 8 ((((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) ∈ ℝ ∧ 0 ≤ (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2)))) ∧ ((((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) ∈ ℝ ∧ 0 ≤ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))) → (((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0 ↔ ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0)))
8671, 77, 78, 84, 85syl22anc 1319 . . . . . . 7 (𝜑 → (((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0 ↔ ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0)))
8786biimpa 500 . . . . . 6 ((𝜑 ∧ ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) + (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2)))) = 0) → ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0))
8870, 87syldan 486 . . . . 5 ((𝜑𝑅 = 𝑀) → ((((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0 ∧ (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0))
8988simpld 474 . . . 4 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) − ((𝐸↑2) + (𝐹↑2))) = 0)
9030, 89eqtrd 2644 . . 3 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0)
917, 15resubcld 10337 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐸↑2)) ∈ ℝ)
927, 15subge0d 10496 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐸↑2)) ↔ (𝐸↑2) ≤ (((𝑀↑2) / 2) / 2)))
9372, 92mpbird 246 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐸↑2)))
947, 23resubcld 10337 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) ∈ ℝ)
957, 23subge0d 10496 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) ↔ (𝐹↑2) ≤ (((𝑀↑2) / 2) / 2)))
9673, 95mpbird 246 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)))
97 add20 10419 . . . . 5 (((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐸↑2))) ∧ (((((𝑀↑2) / 2) / 2) − (𝐹↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)))) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0)))
9891, 93, 94, 96, 97syl22anc 1319 . . . 4 (𝜑 → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0)))
9998biimpa 500 . . 3 ((𝜑 ∧ (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐹↑2))) = 0) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0))
10090, 99syldan 486 . 2 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0))
10148recnd 9947 . . . . . . 7 (𝜑 → (𝐺↑2) ∈ ℂ)
10255recnd 9947 . . . . . . 7 (𝜑 → (𝐻↑2) ∈ ℂ)
1038, 8, 101, 102addsub4d 10318 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐺↑2) + (𝐻↑2))) = (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))))
10427oveq1d 6564 . . . . . 6 (𝜑 → (((((𝑀↑2) / 2) / 2) + (((𝑀↑2) / 2) / 2)) − ((𝐺↑2) + (𝐻↑2))) = (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
105103, 104eqtr3d 2646 . . . . 5 (𝜑 → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
106105adantr 480 . . . 4 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))))
10788simprd 478 . . . 4 ((𝜑𝑅 = 𝑀) → (((𝑀↑2) / 2) − ((𝐺↑2) + (𝐻↑2))) = 0)
108106, 107eqtrd 2644 . . 3 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0)
1097, 48resubcld 10337 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐺↑2)) ∈ ℝ)
1107, 48subge0d 10496 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐺↑2)) ↔ (𝐺↑2) ≤ (((𝑀↑2) / 2) / 2)))
11179, 110mpbird 246 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐺↑2)))
1127, 55resubcld 10337 . . . . 5 (𝜑 → ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) ∈ ℝ)
1137, 55subge0d 10496 . . . . . 6 (𝜑 → (0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) ↔ (𝐻↑2) ≤ (((𝑀↑2) / 2) / 2)))
11480, 113mpbird 246 . . . . 5 (𝜑 → 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)))
115 add20 10419 . . . . 5 (((((((𝑀↑2) / 2) / 2) − (𝐺↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐺↑2))) ∧ (((((𝑀↑2) / 2) / 2) − (𝐻↑2)) ∈ ℝ ∧ 0 ≤ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)))) → ((((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
116109, 111, 112, 114, 115syl22anc 1319 . . . 4 (𝜑 → ((((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0 ↔ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
117116biimpa 500 . . 3 ((𝜑 ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) + ((((𝑀↑2) / 2) / 2) − (𝐻↑2))) = 0) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0))
118108, 117syldan 486 . 2 ((𝜑𝑅 = 𝑀) → (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0))
119100, 118jca 553 1 ((𝜑𝑅 = 𝑀) → ((((((𝑀↑2) / 2) / 2) − (𝐸↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐹↑2)) = 0) ∧ (((((𝑀↑2) / 2) / 2) − (𝐺↑2)) = 0 ∧ ((((𝑀↑2) / 2) / 2) − (𝐻↑2)) = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  {cab 2596  wrex 2897  {crab 2900  wss 3540   class class class wbr 4583  cfv 5804  (class class class)co 6549  infcinf 8230  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  cz 11254  cuz 11563  ...cfz 12197   mod cmo 12530  cexp 12722  cprime 15223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824
This theorem is referenced by:  4sqlem16  15502
  Copyright terms: Public domain W3C validator