Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpsxms | Structured version Visualization version GIF version |
Description: A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
xpsms.t | ⊢ 𝑇 = (𝑅 ×s 𝑆) |
Ref | Expression |
---|---|
xpsxms | ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑇 ∈ ∞MetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpsms.t | . . 3 ⊢ 𝑇 = (𝑅 ×s 𝑆) | |
2 | eqid 2610 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | eqid 2610 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
4 | simpl 472 | . . 3 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑅 ∈ ∞MetSp) | |
5 | simpr 476 | . . 3 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑆 ∈ ∞MetSp) | |
6 | eqid 2610 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) | |
7 | eqid 2610 | . . 3 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
8 | eqid 2610 | . . 3 ⊢ ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | xpsval 16055 | . 2 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑇 = (◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) “s ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8 | xpslem 16056 | . 2 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) = (Base‘((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})))) |
11 | 6 | xpsff1o2 16054 | . . 3 ⊢ (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) |
12 | f1ocnv 6062 | . . 3 ⊢ ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) | |
13 | 11, 12 | mp1i 13 | . 2 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → ◡(𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦})):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ ◡({𝑥} +𝑐 {𝑦}))–1-1-onto→((Base‘𝑅) × (Base‘𝑆))) |
14 | fvex 6113 | . . . 4 ⊢ (Scalar‘𝑅) ∈ V | |
15 | 14 | a1i 11 | . . 3 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → (Scalar‘𝑅) ∈ V) |
16 | 2onn 7607 | . . . 4 ⊢ 2𝑜 ∈ ω | |
17 | nnfi 8038 | . . . 4 ⊢ (2𝑜 ∈ ω → 2𝑜 ∈ Fin) | |
18 | 16, 17 | mp1i 13 | . . 3 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 2𝑜 ∈ Fin) |
19 | xpscf 16049 | . . . 4 ⊢ (◡({𝑅} +𝑐 {𝑆}):2𝑜⟶∞MetSp ↔ (𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp)) | |
20 | 19 | biimpri 217 | . . 3 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → ◡({𝑅} +𝑐 {𝑆}):2𝑜⟶∞MetSp) |
21 | 8 | prdsxms 22145 | . . 3 ⊢ (((Scalar‘𝑅) ∈ V ∧ 2𝑜 ∈ Fin ∧ ◡({𝑅} +𝑐 {𝑆}):2𝑜⟶∞MetSp) → ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) ∈ ∞MetSp) |
22 | 15, 18, 20, 21 | syl3anc 1318 | . 2 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → ((Scalar‘𝑅)Xs◡({𝑅} +𝑐 {𝑆})) ∈ ∞MetSp) |
23 | 9, 10, 13, 22 | imasf1oxms 22104 | 1 ⊢ ((𝑅 ∈ ∞MetSp ∧ 𝑆 ∈ ∞MetSp) → 𝑇 ∈ ∞MetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 {csn 4125 × cxp 5036 ◡ccnv 5037 ran crn 5039 ⟶wf 5800 –1-1-onto→wf1o 5803 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 ωcom 6957 2𝑜c2o 7441 Fincfn 7841 +𝑐 ccda 8872 Basecbs 15695 Scalarcsca 15771 Xscprds 15929 ×s cxps 15989 ∞MetSpcxme 21932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-inf2 8421 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-se 4998 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-isom 5813 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-of 6795 df-om 6958 df-1st 7059 df-2nd 7060 df-supp 7183 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-2o 7448 df-oadd 7451 df-er 7629 df-map 7746 df-ixp 7795 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-fsupp 8159 df-fi 8200 df-sup 8231 df-inf 8232 df-oi 8298 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-n0 11170 df-z 11255 df-dec 11370 df-uz 11564 df-q 11665 df-rp 11709 df-xneg 11822 df-xadd 11823 df-xmul 11824 df-icc 12053 df-fz 12198 df-fzo 12335 df-seq 12664 df-hash 12980 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ress 15702 df-plusg 15781 df-mulr 15782 df-sca 15784 df-vsca 15785 df-ip 15786 df-tset 15787 df-ple 15788 df-ds 15791 df-hom 15793 df-cco 15794 df-rest 15906 df-topn 15907 df-0g 15925 df-gsum 15926 df-topgen 15927 df-pt 15928 df-prds 15931 df-xrs 15985 df-qtop 15990 df-imas 15991 df-xps 15993 df-mre 16069 df-mrc 16070 df-acs 16072 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-submnd 17159 df-mulg 17364 df-cntz 17573 df-cmn 18018 df-psmet 19559 df-xmet 19560 df-bl 19562 df-mopn 19563 df-top 20521 df-bases 20522 df-topon 20523 df-topsp 20524 df-xms 21935 |
This theorem is referenced by: tmsxps 22151 tmsxpsmopn 22152 |
Copyright terms: Public domain | W3C validator |