MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwmc2 Structured version   Visualization version   GIF version

Theorem vdwmc2 15521
Description: Expand out the definition of an arithmetic progression. (Contributed by Mario Carneiro, 18-Aug-2014.)
Hypotheses
Ref Expression
vdwmc.1 𝑋 ∈ V
vdwmc.2 (𝜑𝐾 ∈ ℕ0)
vdwmc.3 (𝜑𝐹:𝑋𝑅)
vdwmc2.4 (𝜑𝐴𝑋)
Assertion
Ref Expression
vdwmc2 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
Distinct variable groups:   𝑎,𝑐,𝑑,𝑚,𝐹   𝐾,𝑎,𝑐,𝑑,𝑚   𝜑,𝑐   𝑅,𝑎,𝑐,𝑑   𝜑,𝑎,𝑑
Allowed substitution hints:   𝜑(𝑚)   𝐴(𝑚,𝑎,𝑐,𝑑)   𝑅(𝑚)   𝑋(𝑚,𝑎,𝑐,𝑑)

Proof of Theorem vdwmc2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vdwmc.1 . . 3 𝑋 ∈ V
2 vdwmc.2 . . 3 (𝜑𝐾 ∈ ℕ0)
3 vdwmc.3 . . 3 (𝜑𝐹:𝑋𝑅)
41, 2, 3vdwmc 15520 . 2 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
5 vdwapid1 15517 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑎 ∈ (𝑎(AP‘𝐾)𝑑))
6 ne0i 3880 . . . . . . . . . . . 12 (𝑎 ∈ (𝑎(AP‘𝐾)𝑑) → (𝑎(AP‘𝐾)𝑑) ≠ ∅)
75, 6syl 17 . . . . . . . . . . 11 ((𝐾 ∈ ℕ ∧ 𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) ≠ ∅)
873expb 1258 . . . . . . . . . 10 ((𝐾 ∈ ℕ ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑎(AP‘𝐾)𝑑) ≠ ∅)
98adantll 746 . . . . . . . . 9 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑎(AP‘𝐾)𝑑) ≠ ∅)
10 ssn0 3928 . . . . . . . . . 10 (((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ∧ (𝑎(AP‘𝐾)𝑑) ≠ ∅) → (𝐹 “ {𝑐}) ≠ ∅)
1110expcom 450 . . . . . . . . 9 ((𝑎(AP‘𝐾)𝑑) ≠ ∅ → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) → (𝐹 “ {𝑐}) ≠ ∅))
129, 11syl 17 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) → (𝐹 “ {𝑐}) ≠ ∅))
13 disjsn 4192 . . . . . . . . . 10 ((𝑅 ∩ {𝑐}) = ∅ ↔ ¬ 𝑐𝑅)
143adantr 480 . . . . . . . . . . . 12 ((𝜑𝐾 ∈ ℕ) → 𝐹:𝑋𝑅)
15 fimacnvdisj 5996 . . . . . . . . . . . . 13 ((𝐹:𝑋𝑅 ∧ (𝑅 ∩ {𝑐}) = ∅) → (𝐹 “ {𝑐}) = ∅)
1615ex 449 . . . . . . . . . . . 12 (𝐹:𝑋𝑅 → ((𝑅 ∩ {𝑐}) = ∅ → (𝐹 “ {𝑐}) = ∅))
1714, 16syl 17 . . . . . . . . . . 11 ((𝜑𝐾 ∈ ℕ) → ((𝑅 ∩ {𝑐}) = ∅ → (𝐹 “ {𝑐}) = ∅))
1817adantr 480 . . . . . . . . . 10 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑅 ∩ {𝑐}) = ∅ → (𝐹 “ {𝑐}) = ∅))
1913, 18syl5bir 232 . . . . . . . . 9 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (¬ 𝑐𝑅 → (𝐹 “ {𝑐}) = ∅))
2019necon1ad 2799 . . . . . . . 8 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝐹 “ {𝑐}) ≠ ∅ → 𝑐𝑅))
2112, 20syld 46 . . . . . . 7 (((𝜑𝐾 ∈ ℕ) ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) → 𝑐𝑅))
2221rexlimdvva 3020 . . . . . 6 ((𝜑𝐾 ∈ ℕ) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) → 𝑐𝑅))
2322pm4.71rd 665 . . . . 5 ((𝜑𝐾 ∈ ℕ) → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ (𝑐𝑅 ∧ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))))
2423exbidv 1837 . . . 4 ((𝜑𝐾 ∈ ℕ) → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐(𝑐𝑅 ∧ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))))
25 df-rex 2902 . . . 4 (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐(𝑐𝑅 ∧ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
2624, 25syl6bbr 277 . . 3 ((𝜑𝐾 ∈ ℕ) → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
27 vdwmc2.4 . . . . . . . . 9 (𝜑𝐴𝑋)
283, 27ffvelrnd 6268 . . . . . . . 8 (𝜑 → (𝐹𝐴) ∈ 𝑅)
29 ne0i 3880 . . . . . . . 8 ((𝐹𝐴) ∈ 𝑅𝑅 ≠ ∅)
3028, 29syl 17 . . . . . . 7 (𝜑𝑅 ≠ ∅)
3130adantr 480 . . . . . 6 ((𝜑𝐾 = 0) → 𝑅 ≠ ∅)
32 1nn 10908 . . . . . . . . 9 1 ∈ ℕ
3332ne0ii 3882 . . . . . . . 8 ℕ ≠ ∅
34 simpllr 795 . . . . . . . . . . . . . . 15 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → 𝐾 = 0)
3534fveq2d 6107 . . . . . . . . . . . . . 14 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (AP‘𝐾) = (AP‘0))
3635oveqd 6566 . . . . . . . . . . . . 13 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) = (𝑎(AP‘0)𝑑))
37 vdwap0 15518 . . . . . . . . . . . . . 14 ((𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘0)𝑑) = ∅)
3837adantll 746 . . . . . . . . . . . . 13 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘0)𝑑) = ∅)
3936, 38eqtrd 2644 . . . . . . . . . . . 12 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) = ∅)
40 0ss 3924 . . . . . . . . . . . 12 ∅ ⊆ (𝐹 “ {𝑐})
4139, 40syl6eqss 3618 . . . . . . . . . . 11 ((((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4241ralrimiva 2949 . . . . . . . . . 10 (((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) → ∀𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
43 r19.2z 4012 . . . . . . . . . 10 ((ℕ ≠ ∅ ∧ ∀𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})) → ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4433, 42, 43sylancr 694 . . . . . . . . 9 (((𝜑𝐾 = 0) ∧ 𝑎 ∈ ℕ) → ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4544ralrimiva 2949 . . . . . . . 8 ((𝜑𝐾 = 0) → ∀𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
46 r19.2z 4012 . . . . . . . 8 ((ℕ ≠ ∅ ∧ ∀𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4733, 45, 46sylancr 694 . . . . . . 7 ((𝜑𝐾 = 0) → ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
4847ralrimivw 2950 . . . . . 6 ((𝜑𝐾 = 0) → ∀𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
49 r19.2z 4012 . . . . . 6 ((𝑅 ≠ ∅ ∧ ∀𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
5031, 48, 49syl2anc 691 . . . . 5 ((𝜑𝐾 = 0) → ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
51 rexex 2985 . . . . 5 (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
5250, 51syl 17 . . . 4 ((𝜑𝐾 = 0) → ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
5352, 502thd 254 . . 3 ((𝜑𝐾 = 0) → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
54 elnn0 11171 . . . 4 (𝐾 ∈ ℕ0 ↔ (𝐾 ∈ ℕ ∨ 𝐾 = 0))
552, 54sylib 207 . . 3 (𝜑 → (𝐾 ∈ ℕ ∨ 𝐾 = 0))
5626, 53, 55mpjaodan 823 . 2 (𝜑 → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
57 vdwapval 15515 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑥 ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑))))
58573expb 1258 . . . . . . . 8 ((𝐾 ∈ ℕ0 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑥 ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑))))
592, 58sylan 487 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑥 ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑))))
6059imbi1d 330 . . . . . 6 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑥 ∈ (𝑎(AP‘𝐾)𝑑) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐}))))
6160albidv 1836 . . . . 5 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (∀𝑥(𝑥 ∈ (𝑎(AP‘𝐾)𝑑) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ ∀𝑥(∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐}))))
62 dfss2 3557 . . . . 5 ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∀𝑥(𝑥 ∈ (𝑎(AP‘𝐾)𝑑) → 𝑥 ∈ (𝐹 “ {𝑐})))
63 ralcom4 3197 . . . . . 6 (∀𝑚 ∈ (0...(𝐾 − 1))∀𝑥(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ ∀𝑥𝑚 ∈ (0...(𝐾 − 1))(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})))
64 ovex 6577 . . . . . . . 8 (𝑎 + (𝑚 · 𝑑)) ∈ V
65 eleq1 2676 . . . . . . . 8 (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝑥 ∈ (𝐹 “ {𝑐}) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
6664, 65ceqsalv 3206 . . . . . . 7 (∀𝑥(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ (𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
6766ralbii 2963 . . . . . 6 (∀𝑚 ∈ (0...(𝐾 − 1))∀𝑥(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}))
68 r19.23v 3005 . . . . . . 7 (∀𝑚 ∈ (0...(𝐾 − 1))(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})))
6968albii 1737 . . . . . 6 (∀𝑥𝑚 ∈ (0...(𝐾 − 1))(𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})) ↔ ∀𝑥(∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})))
7063, 67, 693bitr3i 289 . . . . 5 (∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐}) ↔ ∀𝑥(∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝑎 + (𝑚 · 𝑑)) → 𝑥 ∈ (𝐹 “ {𝑐})))
7161, 62, 703bitr4g 302 . . . 4 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
72712rexbidva 3038 . . 3 (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
7372rexbidv 3034 . 2 (𝜑 → (∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
744, 56, 733bitrd 293 1 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑅𝑎 ∈ ℕ ∃𝑑 ∈ ℕ ∀𝑚 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) ∈ (𝐹 “ {𝑐})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  w3a 1031  wal 1473   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  c0 3874  {csn 4125   class class class wbr 4583  ccnv 5037  cima 5041  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  cn 10897  0cn0 11169  ...cfz 12197  APcvdwa 15507   MonoAP cvdwm 15508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-vdwap 15510  df-vdwmc 15511
This theorem is referenced by:  vdw  15536
  Copyright terms: Public domain W3C validator