Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexex | Structured version Visualization version GIF version |
Description: Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.) |
Ref | Expression |
---|---|
rexex | ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2902 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | exsimpr 1784 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) → ∃𝑥𝜑) | |
3 | 1, 2 | sylbi 206 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∃wex 1695 ∈ wcel 1977 ∃wrex 2897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 |
This theorem depends on definitions: df-bi 196 df-an 385 df-ex 1696 df-rex 2902 |
This theorem is referenced by: reu3 3363 rmo2i 3493 dffo5 6284 nqerf 9631 supsrlem 9811 vdwmc2 15521 isch3 27482 19.9d2rf 28702 volfiniune 29620 bnj594 30236 bnj1371 30351 bnj1374 30353 dfrdg4 31228 bj-0nelsngl 32152 bj-toprntopon 32244 bj-ccinftydisj 32277 poimirlem25 32604 mblfinlem3 32618 mblfinlem4 32619 clsk3nimkb 37358 stoweidlem57 38950 |
Copyright terms: Public domain | W3C validator |