Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccinftydisj Structured version   Visualization version   GIF version

Theorem bj-ccinftydisj 32277
Description: The circle at infinity is disjoint from the set of complex numbers. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-ccinftydisj (ℂ ∩ ℂ) = ∅

Proof of Theorem bj-ccinftydisj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-inftyexpidisj 32274 . . . 4 ¬ (inftyexpi ‘𝑦) ∈ ℂ
21nex 1722 . . 3 ¬ ∃𝑦(inftyexpi ‘𝑦) ∈ ℂ
3 elin 3758 . . . . . 6 (𝑥 ∈ (ℂ ∩ ℂ) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ))
4 df-bj-inftyexpi 32271 . . . . . . . . . . 11 inftyexpi = (𝑧 ∈ (-π(,]π) ↦ ⟨𝑧, ℂ⟩)
54funmpt2 5841 . . . . . . . . . 10 Fun inftyexpi
6 elrnrexdm 6271 . . . . . . . . . 10 (Fun inftyexpi → (𝑥 ∈ ran inftyexpi → ∃𝑦 ∈ dom inftyexpi 𝑥 = (inftyexpi ‘𝑦)))
75, 6ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ran inftyexpi → ∃𝑦 ∈ dom inftyexpi 𝑥 = (inftyexpi ‘𝑦))
8 rexex 2985 . . . . . . . . 9 (∃𝑦 ∈ dom inftyexpi 𝑥 = (inftyexpi ‘𝑦) → ∃𝑦 𝑥 = (inftyexpi ‘𝑦))
97, 8syl 17 . . . . . . . 8 (𝑥 ∈ ran inftyexpi → ∃𝑦 𝑥 = (inftyexpi ‘𝑦))
10 df-bj-ccinfty 32276 . . . . . . . 8 = ran inftyexpi
119, 10eleq2s 2706 . . . . . . 7 (𝑥 ∈ ℂ → ∃𝑦 𝑥 = (inftyexpi ‘𝑦))
1211anim2i 591 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (inftyexpi ‘𝑦)))
133, 12sylbi 206 . . . . 5 (𝑥 ∈ (ℂ ∩ ℂ) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (inftyexpi ‘𝑦)))
14 ancom 465 . . . . . 6 ((𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (inftyexpi ‘𝑦)) ↔ (∃𝑦 𝑥 = (inftyexpi ‘𝑦) ∧ 𝑥 ∈ ℂ))
15 exancom 1774 . . . . . . 7 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)) ↔ ∃𝑦(𝑥 = (inftyexpi ‘𝑦) ∧ 𝑥 ∈ ℂ))
16 19.41v 1901 . . . . . . 7 (∃𝑦(𝑥 = (inftyexpi ‘𝑦) ∧ 𝑥 ∈ ℂ) ↔ (∃𝑦 𝑥 = (inftyexpi ‘𝑦) ∧ 𝑥 ∈ ℂ))
1715, 16bitri 263 . . . . . 6 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)) ↔ (∃𝑦 𝑥 = (inftyexpi ‘𝑦) ∧ 𝑥 ∈ ℂ))
1814, 17sylbb2 227 . . . . 5 ((𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (inftyexpi ‘𝑦)) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)))
1913, 18syl 17 . . . 4 (𝑥 ∈ (ℂ ∩ ℂ) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)))
20 eleq1 2676 . . . . . 6 (𝑥 = (inftyexpi ‘𝑦) → (𝑥 ∈ ℂ ↔ (inftyexpi ‘𝑦) ∈ ℂ))
2120biimpac 502 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)) → (inftyexpi ‘𝑦) ∈ ℂ)
2221eximi 1752 . . . 4 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)) → ∃𝑦(inftyexpi ‘𝑦) ∈ ℂ)
2319, 22syl 17 . . 3 (𝑥 ∈ (ℂ ∩ ℂ) → ∃𝑦(inftyexpi ‘𝑦) ∈ ℂ)
242, 23mto 187 . 2 ¬ 𝑥 ∈ (ℂ ∩ ℂ)
2524bj-nel0 32128 1 (ℂ ∩ ℂ) = ∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wex 1695  wcel 1977  wrex 2897  cin 3539  c0 3874  cop 4131  dom cdm 5038  ran crn 5039  Fun wfun 5798  cfv 5804  (class class class)co 6549  cc 9813  -cneg 10146  (,]cioc 12047  πcpi 14636  inftyexpi cinftyexpi 32270  cccinfty 32275
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-reg 8380  ax-cnex 9871
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-c 9821  df-bj-inftyexpi 32271  df-bj-ccinfty 32276
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator