Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-toprntopon Structured version   Visualization version   GIF version

Theorem bj-toprntopon 32244
Description: A topology is the same thing as a topology on a set (variable-free version). (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-toprntopon Top = ran TopOn

Proof of Theorem bj-toprntopon
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-toptopon2 32234 . . . . . 6 (𝑥 ∈ Top ↔ 𝑥 ∈ (TopOn‘ 𝑥))
21biimpi 205 . . . . 5 (𝑥 ∈ Top → 𝑥 ∈ (TopOn‘ 𝑥))
3 fvex 6113 . . . . . 6 (TopOn‘ 𝑥) ∈ V
4 eleq2 2677 . . . . . . . 8 (𝑦 = (TopOn‘ 𝑥) → (𝑥𝑦𝑥 ∈ (TopOn‘ 𝑥)))
5 eleq1 2676 . . . . . . . 8 (𝑦 = (TopOn‘ 𝑥) → (𝑦 ∈ ran TopOn ↔ (TopOn‘ 𝑥) ∈ ran TopOn))
64, 5anbi12d 743 . . . . . . 7 (𝑦 = (TopOn‘ 𝑥) → ((𝑥𝑦𝑦 ∈ ran TopOn) ↔ (𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn)))
7 simpl 472 . . . . . . . . 9 ((𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn) → 𝑥 ∈ (TopOn‘ 𝑥))
8 bj-fntopon 32243 . . . . . . . . . . . 12 TopOn Fn V
9 vuniex 6852 . . . . . . . . . . . 12 𝑥 ∈ V
108, 9pm3.2i 470 . . . . . . . . . . 11 (TopOn Fn V ∧ 𝑥 ∈ V)
11 fnfvelrn 6264 . . . . . . . . . . 11 ((TopOn Fn V ∧ 𝑥 ∈ V) → (TopOn‘ 𝑥) ∈ ran TopOn)
1210, 11ax-mp 5 . . . . . . . . . 10 (TopOn‘ 𝑥) ∈ ran TopOn
1312jctr 563 . . . . . . . . 9 (𝑥 ∈ (TopOn‘ 𝑥) → (𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn))
147, 13impbii 198 . . . . . . . 8 ((𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn) ↔ 𝑥 ∈ (TopOn‘ 𝑥))
1514a1i 11 . . . . . . 7 (𝑦 = (TopOn‘ 𝑥) → ((𝑥 ∈ (TopOn‘ 𝑥) ∧ (TopOn‘ 𝑥) ∈ ran TopOn) ↔ 𝑥 ∈ (TopOn‘ 𝑥)))
166, 15bitrd 267 . . . . . 6 (𝑦 = (TopOn‘ 𝑥) → ((𝑥𝑦𝑦 ∈ ran TopOn) ↔ 𝑥 ∈ (TopOn‘ 𝑥)))
173, 16spcev 3273 . . . . 5 (𝑥 ∈ (TopOn‘ 𝑥) → ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
182, 17syl 17 . . . 4 (𝑥 ∈ Top → ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
19 bj-funtopon 32236 . . . . . . . . . 10 Fun TopOn
20 elrnrexdm 6271 . . . . . . . . . 10 (Fun TopOn → (𝑦 ∈ ran TopOn → ∃𝑧 ∈ dom TopOn𝑦 = (TopOn‘𝑧)))
2119, 20ax-mp 5 . . . . . . . . 9 (𝑦 ∈ ran TopOn → ∃𝑧 ∈ dom TopOn𝑦 = (TopOn‘𝑧))
22 rexex 2985 . . . . . . . . 9 (∃𝑧 ∈ dom TopOn𝑦 = (TopOn‘𝑧) → ∃𝑧 𝑦 = (TopOn‘𝑧))
2321, 22syl 17 . . . . . . . 8 (𝑦 ∈ ran TopOn → ∃𝑧 𝑦 = (TopOn‘𝑧))
2423anim2i 591 . . . . . . 7 ((𝑥𝑦𝑦 ∈ ran TopOn) → (𝑥𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧)))
25 19.42v 1905 . . . . . . . . 9 (∃𝑧(𝑥𝑦𝑦 = (TopOn‘𝑧)) ↔ (𝑥𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧)))
2625biimpri 217 . . . . . . . 8 ((𝑥𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧)) → ∃𝑧(𝑥𝑦𝑦 = (TopOn‘𝑧)))
27 eqimss 3620 . . . . . . . . . . . 12 (𝑦 = (TopOn‘𝑧) → 𝑦 ⊆ (TopOn‘𝑧))
2827sseld 3567 . . . . . . . . . . 11 (𝑦 = (TopOn‘𝑧) → (𝑥𝑦𝑥 ∈ (TopOn‘𝑧)))
2928com12 32 . . . . . . . . . 10 (𝑥𝑦 → (𝑦 = (TopOn‘𝑧) → 𝑥 ∈ (TopOn‘𝑧)))
3029imp 444 . . . . . . . . 9 ((𝑥𝑦𝑦 = (TopOn‘𝑧)) → 𝑥 ∈ (TopOn‘𝑧))
3130eximi 1752 . . . . . . . 8 (∃𝑧(𝑥𝑦𝑦 = (TopOn‘𝑧)) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧))
3226, 31syl 17 . . . . . . 7 ((𝑥𝑦 ∧ ∃𝑧 𝑦 = (TopOn‘𝑧)) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧))
3324, 32syl 17 . . . . . 6 ((𝑥𝑦𝑦 ∈ ran TopOn) → ∃𝑧 𝑥 ∈ (TopOn‘𝑧))
34 topontop 20541 . . . . . . . 8 (𝑥 ∈ (TopOn‘𝑧) → 𝑥 ∈ Top)
3534eximi 1752 . . . . . . 7 (∃𝑧 𝑥 ∈ (TopOn‘𝑧) → ∃𝑧 𝑥 ∈ Top)
36 ax5e 1829 . . . . . . 7 (∃𝑧 𝑥 ∈ Top → 𝑥 ∈ Top)
3735, 36syl 17 . . . . . 6 (∃𝑧 𝑥 ∈ (TopOn‘𝑧) → 𝑥 ∈ Top)
3833, 37syl 17 . . . . 5 ((𝑥𝑦𝑦 ∈ ran TopOn) → 𝑥 ∈ Top)
3938exlimiv 1845 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn) → 𝑥 ∈ Top)
4018, 39impbii 198 . . 3 (𝑥 ∈ Top ↔ ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
41 eluni 4375 . . . 4 (𝑥 ran TopOn ↔ ∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn))
4241bicomi 213 . . 3 (∃𝑦(𝑥𝑦𝑦 ∈ ran TopOn) ↔ 𝑥 ran TopOn)
4340, 42bitri 263 . 2 (𝑥 ∈ Top ↔ 𝑥 ran TopOn)
4443eqriv 2607 1 Top = ran TopOn
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wrex 2897  Vcvv 3173   cuni 4372  dom cdm 5038  ran crn 5039  Fun wfun 5798   Fn wfn 5799  cfv 5804  Topctop 20517  TopOnctopon 20518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-iota 5768  df-fun 5806  df-fn 5807  df-fv 5812  df-topon 20523
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator