MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssubm Structured version   Visualization version   GIF version

Theorem tsmssubm 21756
Description: Evaluate an infinite group sum in a submonoid. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmssubm.a (𝜑𝐴𝑉)
tsmssubm.1 (𝜑𝐺 ∈ CMnd)
tsmssubm.2 (𝜑𝐺 ∈ TopSp)
tsmssubm.s (𝜑𝑆 ∈ (SubMnd‘𝐺))
tsmssubm.f (𝜑𝐹:𝐴𝑆)
tsmssubm.h 𝐻 = (𝐺s 𝑆)
Assertion
Ref Expression
tsmssubm (𝜑 → (𝐻 tsums 𝐹) = ((𝐺 tsums 𝐹) ∩ 𝑆))

Proof of Theorem tsmssubm
Dummy variables 𝑣 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmssubm.s . . . . . 6 (𝜑𝑆 ∈ (SubMnd‘𝐺))
2 tsmssubm.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
32submbas 17178 . . . . . 6 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 = (Base‘𝐻))
41, 3syl 17 . . . . 5 (𝜑𝑆 = (Base‘𝐻))
54eleq2d 2673 . . . 4 (𝜑 → (𝑥𝑆𝑥 ∈ (Base‘𝐻)))
65anbi1d 737 . . 3 (𝜑 → ((𝑥𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣))) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
7 elin 3758 . . . . 5 (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥 ∈ (𝐺 tsums 𝐹) ∧ 𝑥𝑆))
8 ancom 465 . . . . 5 ((𝑥 ∈ (𝐺 tsums 𝐹) ∧ 𝑥𝑆) ↔ (𝑥𝑆𝑥 ∈ (𝐺 tsums 𝐹)))
97, 8bitri 263 . . . 4 (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥𝑆𝑥 ∈ (𝐺 tsums 𝐹)))
10 eqid 2610 . . . . . . . . . 10 (Base‘𝐺) = (Base‘𝐺)
1110submss 17173 . . . . . . . . 9 (𝑆 ∈ (SubMnd‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
121, 11syl 17 . . . . . . . 8 (𝜑𝑆 ⊆ (Base‘𝐺))
1312sselda 3568 . . . . . . 7 ((𝜑𝑥𝑆) → 𝑥 ∈ (Base‘𝐺))
14 eqid 2610 . . . . . . . . 9 (TopOpen‘𝐺) = (TopOpen‘𝐺)
15 eqid 2610 . . . . . . . . 9 (𝒫 𝐴 ∩ Fin) = (𝒫 𝐴 ∩ Fin)
16 tsmssubm.1 . . . . . . . . 9 (𝜑𝐺 ∈ CMnd)
17 tsmssubm.2 . . . . . . . . 9 (𝜑𝐺 ∈ TopSp)
18 tsmssubm.a . . . . . . . . 9 (𝜑𝐴𝑉)
19 tsmssubm.f . . . . . . . . . 10 (𝜑𝐹:𝐴𝑆)
2019, 12fssd 5970 . . . . . . . . 9 (𝜑𝐹:𝐴⟶(Base‘𝐺))
2110, 14, 15, 16, 17, 18, 20eltsms 21746 . . . . . . . 8 (𝜑 → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ (𝑥 ∈ (Base‘𝐺) ∧ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))))
2221baibd 946 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐺)) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
2313, 22syldan 486 . . . . . 6 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
24 vex 3176 . . . . . . . . 9 𝑢 ∈ V
2524inex1 4727 . . . . . . . 8 (𝑢𝑆) ∈ V
2625a1i 11 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝑢 ∈ (TopOpen‘𝐺)) → (𝑢𝑆) ∈ V)
272, 14resstopn 20800 . . . . . . . . 9 ((TopOpen‘𝐺) ↾t 𝑆) = (TopOpen‘𝐻)
2827eleq2i 2680 . . . . . . . 8 (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ 𝑣 ∈ (TopOpen‘𝐻))
29 fvex 6113 . . . . . . . . . 10 (TopOpen‘𝐺) ∈ V
30 elrest 15911 . . . . . . . . . 10 (((TopOpen‘𝐺) ∈ V ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
3129, 1, 30sylancr 694 . . . . . . . . 9 (𝜑 → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
3231adantr 480 . . . . . . . 8 ((𝜑𝑥𝑆) → (𝑣 ∈ ((TopOpen‘𝐺) ↾t 𝑆) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
3328, 32syl5bbr 273 . . . . . . 7 ((𝜑𝑥𝑆) → (𝑣 ∈ (TopOpen‘𝐻) ↔ ∃𝑢 ∈ (TopOpen‘𝐺)𝑣 = (𝑢𝑆)))
34 eleq2 2677 . . . . . . . . 9 (𝑣 = (𝑢𝑆) → (𝑥𝑣𝑥 ∈ (𝑢𝑆)))
35 elin 3758 . . . . . . . . . . 11 (𝑥 ∈ (𝑢𝑆) ↔ (𝑥𝑢𝑥𝑆))
3635rbaib 945 . . . . . . . . . 10 (𝑥𝑆 → (𝑥 ∈ (𝑢𝑆) ↔ 𝑥𝑢))
3736adantl 481 . . . . . . . . 9 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝑢𝑆) ↔ 𝑥𝑢))
3834, 37sylan9bbr 733 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → (𝑥𝑣𝑥𝑢))
39 eleq2 2677 . . . . . . . . . . . . 13 (𝑣 = (𝑢𝑆) → ((𝐻 Σg (𝐹𝑦)) ∈ 𝑣 ↔ (𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆)))
40 eqid 2610 . . . . . . . . . . . . . . . . 17 (Base‘𝐻) = (Base‘𝐻)
41 eqid 2610 . . . . . . . . . . . . . . . . 17 (0g𝐻) = (0g𝐻)
422submmnd 17177 . . . . . . . . . . . . . . . . . . . 20 (𝑆 ∈ (SubMnd‘𝐺) → 𝐻 ∈ Mnd)
431, 42syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐻 ∈ Mnd)
442subcmn 18065 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ∈ CMnd ∧ 𝐻 ∈ Mnd) → 𝐻 ∈ CMnd)
4516, 43, 44syl2anc 691 . . . . . . . . . . . . . . . . . 18 (𝜑𝐻 ∈ CMnd)
4645ad2antrr 758 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐻 ∈ CMnd)
47 elfpw 8151 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) ↔ (𝑦𝐴𝑦 ∈ Fin))
4847simprbi 479 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ Fin)
4948adantl 481 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
5019ad2antrr 758 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝐹:𝐴𝑆)
5147simplbi 475 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦𝐴)
5251adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦𝐴)
5350, 52fssresd 5984 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦):𝑦𝑆)
544ad2antrr 758 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑆 = (Base‘𝐻))
5554feq3d 5945 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐹𝑦):𝑦𝑆 ↔ (𝐹𝑦):𝑦⟶(Base‘𝐻)))
5653, 55mpbid 221 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦):𝑦⟶(Base‘𝐻))
57 fvex 6113 . . . . . . . . . . . . . . . . . . 19 (0g𝐻) ∈ V
5857a1i 11 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (0g𝐻) ∈ V)
5953, 49, 58fdmfifsupp 8168 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐹𝑦) finSupp (0g𝐻))
6040, 41, 46, 49, 56, 59gsumcl 18139 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐹𝑦)) ∈ (Base‘𝐻))
6160, 54eleqtrrd 2691 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐻 Σg (𝐹𝑦)) ∈ 𝑆)
62 elin 3758 . . . . . . . . . . . . . . . 16 ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ ((𝐻 Σg (𝐹𝑦)) ∈ 𝑢 ∧ (𝐻 Σg (𝐹𝑦)) ∈ 𝑆))
6362rbaib 945 . . . . . . . . . . . . . . 15 ((𝐻 Σg (𝐹𝑦)) ∈ 𝑆 → ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ (𝐻 Σg (𝐹𝑦)) ∈ 𝑢))
6461, 63syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ (𝐻 Σg (𝐹𝑦)) ∈ 𝑢))
651ad2antrr 758 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑆 ∈ (SubMnd‘𝐺))
6649, 65, 53, 2gsumsubm 17196 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐺 Σg (𝐹𝑦)) = (𝐻 Σg (𝐹𝑦)))
6766eleq1d 2672 . . . . . . . . . . . . . 14 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐺 Σg (𝐹𝑦)) ∈ 𝑢 ↔ (𝐻 Σg (𝐹𝑦)) ∈ 𝑢))
6864, 67bitr4d 270 . . . . . . . . . . . . 13 (((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹𝑦)) ∈ (𝑢𝑆) ↔ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
6939, 68sylan9bbr 733 . . . . . . . . . . . 12 ((((𝜑𝑥𝑆) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑣 = (𝑢𝑆)) → ((𝐻 Σg (𝐹𝑦)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
7069an32s 842 . . . . . . . . . . 11 ((((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝐻 Σg (𝐹𝑦)) ∈ 𝑣 ↔ (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))
7170imbi2d 329 . . . . . . . . . 10 ((((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ((𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣) ↔ (𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
7271ralbidva 2968 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → (∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣) ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
7372rexbidv 3034 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → (∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣) ↔ ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢)))
7438, 73imbi12d 333 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝑣 = (𝑢𝑆)) → ((𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)) ↔ (𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
7526, 33, 74ralxfr2d 4808 . . . . . 6 ((𝜑𝑥𝑆) → (∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)) ↔ ∀𝑢 ∈ (TopOpen‘𝐺)(𝑥𝑢 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐺 Σg (𝐹𝑦)) ∈ 𝑢))))
7623, 75bitr4d 270 . . . . 5 ((𝜑𝑥𝑆) → (𝑥 ∈ (𝐺 tsums 𝐹) ↔ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣))))
7776pm5.32da 671 . . . 4 (𝜑 → ((𝑥𝑆𝑥 ∈ (𝐺 tsums 𝐹)) ↔ (𝑥𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
789, 77syl5bb 271 . . 3 (𝜑 → (𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆) ↔ (𝑥𝑆 ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
79 eqid 2610 . . . 4 (TopOpen‘𝐻) = (TopOpen‘𝐻)
80 resstps 20801 . . . . . 6 ((𝐺 ∈ TopSp ∧ 𝑆 ∈ (SubMnd‘𝐺)) → (𝐺s 𝑆) ∈ TopSp)
8117, 1, 80syl2anc 691 . . . . 5 (𝜑 → (𝐺s 𝑆) ∈ TopSp)
822, 81syl5eqel 2692 . . . 4 (𝜑𝐻 ∈ TopSp)
834feq3d 5945 . . . . 5 (𝜑 → (𝐹:𝐴𝑆𝐹:𝐴⟶(Base‘𝐻)))
8419, 83mpbid 221 . . . 4 (𝜑𝐹:𝐴⟶(Base‘𝐻))
8540, 79, 15, 45, 82, 18, 84eltsms 21746 . . 3 (𝜑 → (𝑥 ∈ (𝐻 tsums 𝐹) ↔ (𝑥 ∈ (Base‘𝐻) ∧ ∀𝑣 ∈ (TopOpen‘𝐻)(𝑥𝑣 → ∃𝑧 ∈ (𝒫 𝐴 ∩ Fin)∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(𝑧𝑦 → (𝐻 Σg (𝐹𝑦)) ∈ 𝑣)))))
866, 78, 853bitr4rd 300 . 2 (𝜑 → (𝑥 ∈ (𝐻 tsums 𝐹) ↔ 𝑥 ∈ ((𝐺 tsums 𝐹) ∩ 𝑆)))
8786eqrdv 2608 1 (𝜑 → (𝐻 tsums 𝐹) = ((𝐺 tsums 𝐹) ∩ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  𝒫 cpw 4108  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  Basecbs 15695  s cress 15696  t crest 15904  TopOpenctopn 15905  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  SubMndcsubmnd 17157  CMndccmn 18016  TopSpctps 20519   tsums ctsu 21739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-tset 15787  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-cntz 17573  df-cmn 18018  df-fbas 19564  df-fg 19565  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-ntr 20634  df-nei 20712  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-tsms 21740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator