MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssubm Structured version   Unicode version

Theorem tsmssubm 21143
Description: Evaluate an infinite group sum in a submonoid. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmssubm.a  |-  ( ph  ->  A  e.  V )
tsmssubm.1  |-  ( ph  ->  G  e. CMnd )
tsmssubm.2  |-  ( ph  ->  G  e.  TopSp )
tsmssubm.s  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
tsmssubm.f  |-  ( ph  ->  F : A --> S )
tsmssubm.h  |-  H  =  ( Gs  S )
Assertion
Ref Expression
tsmssubm  |-  ( ph  ->  ( H tsums  F )  =  ( ( G tsums 
F )  i^i  S
) )

Proof of Theorem tsmssubm
Dummy variables  v  u  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmssubm.s . . . . . 6  |-  ( ph  ->  S  e.  (SubMnd `  G ) )
2 tsmssubm.h . . . . . . 7  |-  H  =  ( Gs  S )
32submbas 16589 . . . . . 6  |-  ( S  e.  (SubMnd `  G
)  ->  S  =  ( Base `  H )
)
41, 3syl 17 . . . . 5  |-  ( ph  ->  S  =  ( Base `  H ) )
54eleq2d 2492 . . . 4  |-  ( ph  ->  ( x  e.  S  <->  x  e.  ( Base `  H
) ) )
65anbi1d 709 . . 3  |-  ( ph  ->  ( ( x  e.  S  /\  A. v  e.  ( TopOpen `  H )
( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v ) ) )  <-> 
( x  e.  (
Base `  H )  /\  A. v  e.  (
TopOpen `  H ) ( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( H  gsumg  ( F  |`  y
) )  e.  v ) ) ) ) )
7 elin 3649 . . . . 5  |-  ( x  e.  ( ( G tsums 
F )  i^i  S
)  <->  ( x  e.  ( G tsums  F )  /\  x  e.  S
) )
8 ancom 451 . . . . 5  |-  ( ( x  e.  ( G tsums 
F )  /\  x  e.  S )  <->  ( x  e.  S  /\  x  e.  ( G tsums  F ) ) )
97, 8bitri 252 . . . 4  |-  ( x  e.  ( ( G tsums 
F )  i^i  S
)  <->  ( x  e.  S  /\  x  e.  ( G tsums  F ) ) )
10 eqid 2422 . . . . . . . . . 10  |-  ( Base `  G )  =  (
Base `  G )
1110submss 16584 . . . . . . . . 9  |-  ( S  e.  (SubMnd `  G
)  ->  S  C_  ( Base `  G ) )
121, 11syl 17 . . . . . . . 8  |-  ( ph  ->  S  C_  ( Base `  G ) )
1312sselda 3464 . . . . . . 7  |-  ( (
ph  /\  x  e.  S )  ->  x  e.  ( Base `  G
) )
14 eqid 2422 . . . . . . . . 9  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
15 eqid 2422 . . . . . . . . 9  |-  ( ~P A  i^i  Fin )  =  ( ~P A  i^i  Fin )
16 tsmssubm.1 . . . . . . . . 9  |-  ( ph  ->  G  e. CMnd )
17 tsmssubm.2 . . . . . . . . 9  |-  ( ph  ->  G  e.  TopSp )
18 tsmssubm.a . . . . . . . . 9  |-  ( ph  ->  A  e.  V )
19 tsmssubm.f . . . . . . . . . 10  |-  ( ph  ->  F : A --> S )
2019, 12fssd 5751 . . . . . . . . 9  |-  ( ph  ->  F : A --> ( Base `  G ) )
2110, 14, 15, 16, 17, 18, 20eltsms 21133 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( G tsums  F )  <->  ( x  e.  ( Base `  G
)  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) ) ) )
2221baibd 917 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( Base `  G )
)  ->  ( x  e.  ( G tsums  F )  <->  A. u  e.  ( TopOpen
`  G ) ( x  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( G  gsumg  ( F  |`  y
) )  e.  u
) ) ) )
2313, 22syldan 472 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  (
x  e.  ( G tsums 
F )  <->  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) ) )
24 vex 3084 . . . . . . . . 9  |-  u  e. 
_V
2524inex1 4561 . . . . . . . 8  |-  ( u  i^i  S )  e. 
_V
2625a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  S )  /\  u  e.  ( TopOpen `  G )
)  ->  ( u  i^i  S )  e.  _V )
272, 14resstopn 20188 . . . . . . . . 9  |-  ( (
TopOpen `  G )t  S )  =  ( TopOpen `  H
)
2827eleq2i 2500 . . . . . . . 8  |-  ( v  e.  ( ( TopOpen `  G )t  S )  <->  v  e.  ( TopOpen `  H )
)
29 fvex 5887 . . . . . . . . . 10  |-  ( TopOpen `  G )  e.  _V
30 elrest 15313 . . . . . . . . . 10  |-  ( ( ( TopOpen `  G )  e.  _V  /\  S  e.  (SubMnd `  G )
)  ->  ( v  e.  ( ( TopOpen `  G
)t 
S )  <->  E. u  e.  ( TopOpen `  G )
v  =  ( u  i^i  S ) ) )
3129, 1, 30sylancr 667 . . . . . . . . 9  |-  ( ph  ->  ( v  e.  ( ( TopOpen `  G )t  S
)  <->  E. u  e.  (
TopOpen `  G ) v  =  ( u  i^i 
S ) ) )
3231adantr 466 . . . . . . . 8  |-  ( (
ph  /\  x  e.  S )  ->  (
v  e.  ( (
TopOpen `  G )t  S )  <->  E. u  e.  ( TopOpen
`  G ) v  =  ( u  i^i 
S ) ) )
3328, 32syl5bbr 262 . . . . . . 7  |-  ( (
ph  /\  x  e.  S )  ->  (
v  e.  ( TopOpen `  H )  <->  E. u  e.  ( TopOpen `  G )
v  =  ( u  i^i  S ) ) )
34 eleq2 2495 . . . . . . . . 9  |-  ( v  =  ( u  i^i 
S )  ->  (
x  e.  v  <->  x  e.  ( u  i^i  S ) ) )
35 elin 3649 . . . . . . . . . . 11  |-  ( x  e.  ( u  i^i 
S )  <->  ( x  e.  u  /\  x  e.  S ) )
3635rbaib 914 . . . . . . . . . 10  |-  ( x  e.  S  ->  (
x  e.  ( u  i^i  S )  <->  x  e.  u ) )
3736adantl 467 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  S )  ->  (
x  e.  ( u  i^i  S )  <->  x  e.  u ) )
3834, 37sylan9bbr 705 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  S )  /\  v  =  ( u  i^i 
S ) )  -> 
( x  e.  v  <-> 
x  e.  u ) )
39 eleq2 2495 . . . . . . . . . . . . 13  |-  ( v  =  ( u  i^i 
S )  ->  (
( H  gsumg  ( F  |`  y
) )  e.  v  <-> 
( H  gsumg  ( F  |`  y
) )  e.  ( u  i^i  S ) ) )
40 eqid 2422 . . . . . . . . . . . . . . . . 17  |-  ( Base `  H )  =  (
Base `  H )
41 eqid 2422 . . . . . . . . . . . . . . . . 17  |-  ( 0g
`  H )  =  ( 0g `  H
)
422submmnd 16588 . . . . . . . . . . . . . . . . . . . 20  |-  ( S  e.  (SubMnd `  G
)  ->  H  e.  Mnd )
431, 42syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  H  e.  Mnd )
442subcmn 17464 . . . . . . . . . . . . . . . . . . 19  |-  ( ( G  e. CMnd  /\  H  e.  Mnd )  ->  H  e. CMnd )
4516, 43, 44syl2anc 665 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  H  e. CMnd )
4645ad2antrr 730 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  H  e. CMnd )
47 elfpw 7878 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  ( ~P A  i^i  Fin )  <->  ( y  C_  A  /\  y  e. 
Fin ) )
4847simprbi 465 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  e.  Fin )
4948adantl 467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  e.  Fin )
5019ad2antrr 730 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  F : A --> S )
5147simplbi 461 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  C_  A )
5251adantl 467 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  C_  A )
5350, 52fssresd 5763 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  y ) : y --> S )
544ad2antrr 730 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  S  =  ( Base `  H
) )
5554feq3d 5730 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
( F  |`  y
) : y --> S  <-> 
( F  |`  y
) : y --> (
Base `  H )
) )
5653, 55mpbid 213 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  y ) : y --> ( Base `  H
) )
57 fvex 5887 . . . . . . . . . . . . . . . . . . 19  |-  ( 0g
`  H )  e. 
_V
5857a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( 0g `  H )  e. 
_V )
5953, 49, 58fdmfifsupp 7895 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  y ) finSupp  ( 0g `  H ) )
6040, 41, 46, 49, 56, 59gsumcl 17536 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( H  gsumg  ( F  |`  y
) )  e.  (
Base `  H )
)
6160, 54eleqtrrd 2513 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( H  gsumg  ( F  |`  y
) )  e.  S
)
62 elin 3649 . . . . . . . . . . . . . . . 16  |-  ( ( H  gsumg  ( F  |`  y
) )  e.  ( u  i^i  S )  <-> 
( ( H  gsumg  ( F  |`  y ) )  e.  u  /\  ( H 
gsumg  ( F  |`  y ) )  e.  S ) )
6362rbaib 914 . . . . . . . . . . . . . . 15  |-  ( ( H  gsumg  ( F  |`  y
) )  e.  S  ->  ( ( H  gsumg  ( F  |`  y ) )  e.  ( u  i^i  S
)  <->  ( H  gsumg  ( F  |`  y ) )  e.  u ) )
6461, 63syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
( H  gsumg  ( F  |`  y
) )  e.  ( u  i^i  S )  <-> 
( H  gsumg  ( F  |`  y
) )  e.  u
) )
651ad2antrr 730 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  S  e.  (SubMnd `  G )
)
6649, 65, 53, 2gsumsubm 16607 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  y
) )  =  ( H  gsumg  ( F  |`  y
) ) )
6766eleq1d 2491 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
( G  gsumg  ( F  |`  y
) )  e.  u  <->  ( H  gsumg  ( F  |`  y
) )  e.  u
) )
6864, 67bitr4d 259 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
( H  gsumg  ( F  |`  y
) )  e.  ( u  i^i  S )  <-> 
( G  gsumg  ( F  |`  y
) )  e.  u
) )
6939, 68sylan9bbr 705 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  S )  /\  y  e.  ( ~P A  i^i  Fin )
)  /\  v  =  ( u  i^i  S ) )  ->  ( ( H  gsumg  ( F  |`  y
) )  e.  v  <-> 
( G  gsumg  ( F  |`  y
) )  e.  u
) )
7069an32s 811 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  S )  /\  v  =  (
u  i^i  S )
)  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
( H  gsumg  ( F  |`  y
) )  e.  v  <-> 
( G  gsumg  ( F  |`  y
) )  e.  u
) )
7170imbi2d 317 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  S )  /\  v  =  (
u  i^i  S )
)  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
( z  C_  y  ->  ( H  gsumg  ( F  |`  y
) )  e.  v )  <->  ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) )
7271ralbidva 2861 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  S )  /\  v  =  ( u  i^i 
S ) )  -> 
( A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v )  <->  A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) )
7372rexbidv 2939 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  S )  /\  v  =  ( u  i^i 
S ) )  -> 
( E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v )  <->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) )
7438, 73imbi12d 321 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  S )  /\  v  =  ( u  i^i 
S ) )  -> 
( ( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v ) )  <->  ( x  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) ) )
7526, 33, 74ralxfr2d 4633 . . . . . 6  |-  ( (
ph  /\  x  e.  S )  ->  ( A. v  e.  ( TopOpen
`  H ) ( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin )
( z  C_  y  ->  ( H  gsumg  ( F  |`  y
) )  e.  v ) )  <->  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( G  gsumg  ( F  |`  y ) )  e.  u ) ) ) )
7623, 75bitr4d 259 . . . . 5  |-  ( (
ph  /\  x  e.  S )  ->  (
x  e.  ( G tsums 
F )  <->  A. v  e.  ( TopOpen `  H )
( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v ) ) ) )
7776pm5.32da 645 . . . 4  |-  ( ph  ->  ( ( x  e.  S  /\  x  e.  ( G tsums  F ) )  <->  ( x  e.  S  /\  A. v  e.  ( TopOpen `  H )
( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v ) ) ) ) )
789, 77syl5bb 260 . . 3  |-  ( ph  ->  ( x  e.  ( ( G tsums  F )  i^i  S )  <->  ( x  e.  S  /\  A. v  e.  ( TopOpen `  H )
( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v ) ) ) ) )
79 eqid 2422 . . . 4  |-  ( TopOpen `  H )  =  (
TopOpen `  H )
80 resstps 20189 . . . . . 6  |-  ( ( G  e.  TopSp  /\  S  e.  (SubMnd `  G )
)  ->  ( Gs  S
)  e.  TopSp )
8117, 1, 80syl2anc 665 . . . . 5  |-  ( ph  ->  ( Gs  S )  e.  TopSp )
822, 81syl5eqel 2514 . . . 4  |-  ( ph  ->  H  e.  TopSp )
834feq3d 5730 . . . . 5  |-  ( ph  ->  ( F : A --> S 
<->  F : A --> ( Base `  H ) ) )
8419, 83mpbid 213 . . . 4  |-  ( ph  ->  F : A --> ( Base `  H ) )
8540, 79, 15, 45, 82, 18, 84eltsms 21133 . . 3  |-  ( ph  ->  ( x  e.  ( H tsums  F )  <->  ( x  e.  ( Base `  H
)  /\  A. v  e.  ( TopOpen `  H )
( x  e.  v  ->  E. z  e.  ( ~P A  i^i  Fin ) A. y  e.  ( ~P A  i^i  Fin ) ( z  C_  y  ->  ( H  gsumg  ( F  |`  y ) )  e.  v ) ) ) ) )
866, 78, 853bitr4rd 289 . 2  |-  ( ph  ->  ( x  e.  ( H tsums  F )  <->  x  e.  ( ( G tsums  F
)  i^i  S )
) )
8786eqrdv 2419 1  |-  ( ph  ->  ( H tsums  F )  =  ( ( G tsums 
F )  i^i  S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1868   A.wral 2775   E.wrex 2776   _Vcvv 3081    i^i cin 3435    C_ wss 3436   ~Pcpw 3979    |` cres 4851   -->wf 5593   ` cfv 5597  (class class class)co 6301   Fincfn 7573   Basecbs 15108   ↾s cress 15109   ↾t crest 15306   TopOpenctopn 15307   0gc0g 15325    gsumg cgsu 15326   Mndcmnd 16522  SubMndcsubmnd 16568  CMndccmn 17417   TopSpctps 19905   tsums ctsu 21126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-se 4809  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-isom 5606  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-supp 6922  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-oadd 7190  df-er 7367  df-map 7478  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-fsupp 7886  df-fi 7927  df-oi 8027  df-card 8374  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11785  df-fzo 11916  df-seq 12213  df-hash 12515  df-ndx 15111  df-slot 15112  df-base 15113  df-sets 15114  df-ress 15115  df-plusg 15190  df-tset 15196  df-rest 15308  df-topn 15309  df-0g 15327  df-gsum 15328  df-topgen 15329  df-mgm 16475  df-sgrp 16514  df-mnd 16524  df-submnd 16570  df-cntz 16958  df-cmn 17419  df-fbas 18954  df-fg 18955  df-top 19907  df-bases 19908  df-topon 19909  df-topsp 19910  df-ntr 20021  df-nei 20100  df-fil 20847  df-fm 20939  df-flim 20940  df-flf 20941  df-tsms 21127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator