Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  swrdswrd Structured version   Visualization version   GIF version

Theorem swrdswrd 13312
 Description: A subword of a subword. (Contributed by Alexander van der Vekens, 4-Apr-2018.)
Assertion
Ref Expression
swrdswrd ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)))

Proof of Theorem swrdswrd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 swrdcl 13271 . . . . . 6 (𝑊 ∈ Word 𝑉 → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
213ad2ant1 1075 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
32adantr 480 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉)
4 elfz0ubfz0 12312 . . . . 5 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → 𝐾 ∈ (0...𝐿))
54adantl 481 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → 𝐾 ∈ (0...𝐿))
6 elfzuz 12209 . . . . . . . . 9 (𝐾 ∈ (0...(𝑁𝑀)) → 𝐾 ∈ (ℤ‘0))
76adantl 481 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐾 ∈ (0...(𝑁𝑀))) → 𝐾 ∈ (ℤ‘0))
8 fzss1 12251 . . . . . . . 8 (𝐾 ∈ (ℤ‘0) → (𝐾...(𝑁𝑀)) ⊆ (0...(𝑁𝑀)))
97, 8syl 17 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐾 ∈ (0...(𝑁𝑀))) → (𝐾...(𝑁𝑀)) ⊆ (0...(𝑁𝑀)))
109sseld 3567 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ 𝐾 ∈ (0...(𝑁𝑀))) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → 𝐿 ∈ (0...(𝑁𝑀))))
1110impr 647 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → 𝐿 ∈ (0...(𝑁𝑀)))
12 3ancomb 1040 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ↔ (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))))
1312biimpi 205 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))))
1413adantr 480 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))))
15 swrdlen 13275 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) → (#‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
1614, 15syl 17 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (#‘(𝑊 substr ⟨𝑀, 𝑁⟩)) = (𝑁𝑀))
1716oveq2d 6565 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (0...(#‘(𝑊 substr ⟨𝑀, 𝑁⟩))) = (0...(𝑁𝑀)))
1811, 17eleqtrrd 2691 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → 𝐿 ∈ (0...(#‘(𝑊 substr ⟨𝑀, 𝑁⟩))))
19 swrdval2 13272 . . . 4 (((𝑊 substr ⟨𝑀, 𝑁⟩) ∈ Word 𝑉𝐾 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(#‘(𝑊 substr ⟨𝑀, 𝑁⟩)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))))
203, 5, 18, 19syl3anc 1318 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))))
21 fvex 6113 . . . . . 6 ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)) ∈ V
22 eqid 2610 . . . . . 6 (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)))
2321, 22fnmpti 5935 . . . . 5 (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) Fn (0..^(𝐿𝐾))
2423a1i 11 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) Fn (0..^(𝐿𝐾)))
25 swrdswrdlem 13311 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(#‘𝑊))))
26 swrdvalfn 13278 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(#‘𝑊))) → (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
2725, 26syl 17 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
28 elfzelz 12213 . . . . . . . . . 10 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℤ)
29 elfzelz 12213 . . . . . . . . . . 11 (𝐿 ∈ (𝐾...(𝑁𝑀)) → 𝐿 ∈ ℤ)
30 elfzelz 12213 . . . . . . . . . . 11 (𝐾 ∈ (0...(𝑁𝑀)) → 𝐾 ∈ ℤ)
31 zcn 11259 . . . . . . . . . . . . . 14 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
3231adantr 480 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝑀 ∈ ℂ)
33 zcn 11259 . . . . . . . . . . . . . 14 (𝐿 ∈ ℤ → 𝐿 ∈ ℂ)
3433ad2antrl 760 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐿 ∈ ℂ)
35 zcn 11259 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
3635ad2antll 761 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → 𝐾 ∈ ℂ)
37 pnpcan 10199 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑀 + 𝐿) − (𝑀 + 𝐾)) = (𝐿𝐾))
3837eqcomd 2616 . . . . . . . . . . . . 13 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
3932, 34, 36, 38syl3anc 1318 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ)) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
4039expcom 450 . . . . . . . . . . 11 ((𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
4129, 30, 40syl2anr 494 . . . . . . . . . 10 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
4228, 41syl5com 31 . . . . . . . . 9 (𝑀 ∈ (0...𝑁) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
43423ad2ant3 1077 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
4443imp 444 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
4544oveq2d 6565 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (0..^(𝐿𝐾)) = (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
4645fneq2d 5896 . . . . 5 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^(𝐿𝐾)) ↔ (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
4727, 46mpbird 246 . . . 4 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩) Fn (0..^(𝐿𝐾)))
48 simpr 476 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → 𝑦 ∈ (0..^(𝐿𝐾)))
49 fvex 6113 . . . . . . 7 (𝑊‘((𝑦 + 𝐾) + 𝑀)) ∈ V
50 oveq1 6556 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 + 𝐾) = (𝑦 + 𝐾))
5150oveq1d 6564 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥 + 𝐾) + 𝑀) = ((𝑦 + 𝐾) + 𝑀))
5251fveq2d 6107 . . . . . . . 8 (𝑥 = 𝑦 → (𝑊‘((𝑥 + 𝐾) + 𝑀)) = (𝑊‘((𝑦 + 𝐾) + 𝑀)))
53 eqid 2610 . . . . . . . 8 (𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀))) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))
5452, 53fvmptg 6189 . . . . . . 7 ((𝑦 ∈ (0..^(𝐿𝐾)) ∧ (𝑊‘((𝑦 + 𝐾) + 𝑀)) ∈ V) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦) = (𝑊‘((𝑦 + 𝐾) + 𝑀)))
5548, 49, 54sylancl 693 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦) = (𝑊‘((𝑦 + 𝐾) + 𝑀)))
56 elfzoelz 12339 . . . . . . . . 9 (𝑦 ∈ (0..^(𝐿𝐾)) → 𝑦 ∈ ℤ)
57 zcn 11259 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
5857, 31, 353anim123i 1240 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ))
59583expa 1257 . . . . . . . . . . . . . . . . 17 (((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ))
60 add32r 10134 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑦 + (𝑀 + 𝐾)) = ((𝑦 + 𝐾) + 𝑀))
6160eqcomd 2616 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))
6259, 61syl 17 . . . . . . . . . . . . . . . 16 (((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))
6362exp31 628 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → (𝑀 ∈ ℤ → (𝐾 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
6463com13 86 . . . . . . . . . . . . . 14 (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
6530, 64syl 17 . . . . . . . . . . . . 13 (𝐾 ∈ (0...(𝑁𝑀)) → (𝑀 ∈ ℤ → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
6665adantr 480 . . . . . . . . . . . 12 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑀 ∈ ℤ → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
6728, 66syl5com 31 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
68673ad2ant3 1077 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))))
6968imp 444 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑦 ∈ ℤ → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾))))
7056, 69syl5com 31 . . . . . . . 8 (𝑦 ∈ (0..^(𝐿𝐾)) → (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾))))
7170impcom 445 . . . . . . 7 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑦 + 𝐾) + 𝑀) = (𝑦 + (𝑀 + 𝐾)))
7271fveq2d 6107 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑊‘((𝑦 + 𝐾) + 𝑀)) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
7355, 72eqtrd 2644 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
7413ad3antrrr 762 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → (𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))))
75 elfz2nn0 12300 . . . . . . . . . . . . 13 (𝐾 ∈ (0...(𝑁𝑀)) ↔ (𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0𝐾 ≤ (𝑁𝑀)))
76 elfz2 12204 . . . . . . . . . . . . . . . 16 (𝐿 ∈ (𝐾...(𝑁𝑀)) ↔ ((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))))
77 elfzo0 12376 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (0..^(𝐿𝐾)) ↔ (𝑥 ∈ ℕ0 ∧ (𝐿𝐾) ∈ ℕ ∧ 𝑥 < (𝐿𝐾)))
78 nn0re 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 ∈ ℕ0𝑥 ∈ ℝ)
7978ad2antrl 760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → 𝑥 ∈ ℝ)
80 nn0re 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
8180adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐾 ∈ ℝ)
82 zre 11258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
8382ad2antll 761 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐿 ∈ ℝ)
84 ltaddsub 10381 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((𝑥 + 𝐾) < 𝐿𝑥 < (𝐿𝐾)))
8584bicomd 212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑥 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑥 < (𝐿𝐾) ↔ (𝑥 + 𝐾) < 𝐿))
8679, 81, 83, 85syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 < (𝐿𝐾) ↔ (𝑥 + 𝐾) < 𝐿))
87 nn0addcl 11205 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑥 + 𝐾) ∈ ℕ0)
8887ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑥 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℕ0))
8988adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℕ0))
9089impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 + 𝐾) ∈ ℕ0)
9190ad3antrrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) ∈ ℕ0)
92 elnn0z 11267 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑥 + 𝐾) ∈ ℕ0 ↔ ((𝑥 + 𝐾) ∈ ℤ ∧ 0 ≤ (𝑥 + 𝐾)))
93 0red 9920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈ ℝ)
94 zre 11258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 ((𝑥 + 𝐾) ∈ ℤ → (𝑥 + 𝐾) ∈ ℝ)
9594adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑥 + 𝐾) ∈ ℝ)
9682adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
97 lelttr 10007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 ((0 ∈ ℝ ∧ (𝑥 + 𝐾) ∈ ℝ ∧ 𝐿 ∈ ℝ) → ((0 ≤ (𝑥 + 𝐾) ∧ (𝑥 + 𝐾) < 𝐿) → 0 < 𝐿))
9893, 95, 96, 97syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ (𝑥 + 𝐾) ∧ (𝑥 + 𝐾) < 𝐿) → 0 < 𝐿))
99 0red 9920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → 0 ∈ ℝ)
10082adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → 𝐿 ∈ ℝ)
101 nn0re 11178 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑁𝑀) ∈ ℕ0 → (𝑁𝑀) ∈ ℝ)
102101adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → (𝑁𝑀) ∈ ℝ)
103 ltletr 10008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((0 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (𝑁𝑀) ∈ ℝ) → ((0 < 𝐿𝐿 ≤ (𝑁𝑀)) → 0 < (𝑁𝑀)))
10499, 100, 102, 103syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → ((0 < 𝐿𝐿 ≤ (𝑁𝑀)) → 0 < (𝑁𝑀)))
105 elnnnn0b 11214 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 ((𝑁𝑀) ∈ ℕ ↔ ((𝑁𝑀) ∈ ℕ0 ∧ 0 < (𝑁𝑀)))
106105simplbi2 653 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑁𝑀) ∈ ℕ0 → (0 < (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))
107106adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → (0 < (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))
108104, 107syld 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝐿 ∈ ℤ ∧ (𝑁𝑀) ∈ ℕ0) → ((0 < 𝐿𝐿 ≤ (𝑁𝑀)) → (𝑁𝑀) ∈ ℕ))
109108exp4b 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝐿 ∈ ℤ → ((𝑁𝑀) ∈ ℕ0 → (0 < 𝐿 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
110109com23 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝐿 ∈ ℤ → (0 < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
111110adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
11298, 111syld 46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((0 ≤ (𝑥 + 𝐾) ∧ (𝑥 + 𝐾) < 𝐿) → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
113112expd 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ (𝑥 + 𝐾) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))
114113a1d 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑥 + 𝐾) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (0 ≤ (𝑥 + 𝐾) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))))
115114ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑥 + 𝐾) ∈ ℤ → (𝐿 ∈ ℤ → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (0 ≤ (𝑥 + 𝐾) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))))
116115com24 93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥 + 𝐾) ∈ ℤ → (0 ≤ (𝑥 + 𝐾) → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))))
117116imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (((𝑥 + 𝐾) ∈ ℤ ∧ 0 ≤ (𝑥 + 𝐾)) → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))))
11892, 117sylbi 206 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑥 + 𝐾) ∈ ℕ0 → ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))))
11987, 118mpcom 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝐿 ∈ ℤ → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))
120119impancom 455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾 ∈ ℕ0 → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ)))))
121120impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑁𝑀) ∈ ℕ))))
122121imp41 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑁𝑀) ∈ ℕ)
123 nn0readdcl 11234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑥 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑥 + 𝐾) ∈ ℝ)
124123ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑥 ∈ ℕ0 → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℝ))
125124adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐾 ∈ ℕ0 → (𝑥 + 𝐾) ∈ ℝ))
126125impcom 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 + 𝐾) ∈ ℝ)
127126adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 + 𝐾) ∈ ℝ)
12883adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑁𝑀) ∈ ℕ0) → 𝐿 ∈ ℝ)
129101adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑁𝑀) ∈ ℕ0) → (𝑁𝑀) ∈ ℝ)
130 ltletr 10008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑥 + 𝐾) ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ (𝑁𝑀) ∈ ℝ) → (((𝑥 + 𝐾) < 𝐿𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) < (𝑁𝑀)))
131127, 128, 129, 130syl3anc 1318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑁𝑀) ∈ ℕ0) → (((𝑥 + 𝐾) < 𝐿𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) < (𝑁𝑀)))
132131exp4b 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑁𝑀) ∈ ℕ0 → ((𝑥 + 𝐾) < 𝐿 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) < (𝑁𝑀)))))
133132com23 84 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) < (𝑁𝑀)))))
134133imp41 617 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) < (𝑁𝑀))
135 elfzo0 12376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)) ↔ ((𝑥 + 𝐾) ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ ∧ (𝑥 + 𝐾) < (𝑁𝑀)))
13691, 122, 134, 135syl3anbrc 1239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) ∧ (𝑥 + 𝐾) < 𝐿) ∧ (𝑁𝑀) ∈ ℕ0) ∧ 𝐿 ≤ (𝑁𝑀)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))
137136exp41 636 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝑥 + 𝐾) < 𝐿 → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
13886, 137sylbid 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐾 ∈ ℕ0 ∧ (𝑥 ∈ ℕ0𝐿 ∈ ℤ)) → (𝑥 < (𝐿𝐾) → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
139138ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐾 ∈ ℕ0 → ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝑥 < (𝐿𝐾) → ((𝑁𝑀) ∈ ℕ0 → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))))
140139com24 93 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐾 ∈ ℕ0 → ((𝑁𝑀) ∈ ℕ0 → (𝑥 < (𝐿𝐾) → ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))))
141140imp 444 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 < (𝐿𝐾) → ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
142141com13 86 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ ℕ0𝐿 ∈ ℤ) → (𝑥 < (𝐿𝐾) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
143142impancom 455 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ ℕ0𝑥 < (𝐿𝐾)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
1441433adant2 1073 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ ℕ0 ∧ (𝐿𝐾) ∈ ℕ ∧ 𝑥 < (𝐿𝐾)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
14577, 144sylbi 206 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (0..^(𝐿𝐾)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ≤ (𝑁𝑀) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
146145com14 94 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ≤ (𝑁𝑀) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
147146adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → (𝐿 ∈ ℤ → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
148147com12 32 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℤ → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
1491483ad2ant3 1077 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((𝐾𝐿𝐿 ≤ (𝑁𝑀)) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))))
150149imp 444 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℤ ∧ (𝑁𝑀) ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (𝐾𝐿𝐿 ≤ (𝑁𝑀))) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
15176, 150sylbi 206 . . . . . . . . . . . . . . 15 (𝐿 ∈ (𝐾...(𝑁𝑀)) → ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
152151com12 32 . . . . . . . . . . . . . 14 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
1531523adant3 1074 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0 ∧ (𝑁𝑀) ∈ ℕ0𝐾 ≤ (𝑁𝑀)) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
15475, 153sylbi 206 . . . . . . . . . . . 12 (𝐾 ∈ (0...(𝑁𝑀)) → (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))))
155154imp 444 . . . . . . . . . . 11 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))
156155adantl 481 . . . . . . . . . 10 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))
157156adantr 480 . . . . . . . . 9 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑥 ∈ (0..^(𝐿𝐾)) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))))
158157imp 444 . . . . . . . 8 (((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀)))
159 swrdfv 13276 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(#‘𝑊))) ∧ (𝑥 + 𝐾) ∈ (0..^(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)) = (𝑊‘((𝑥 + 𝐾) + 𝑀)))
16074, 158, 159syl2anc 691 . . . . . . 7 (((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) ∧ 𝑥 ∈ (0..^(𝐿𝐾))) → ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)) = (𝑊‘((𝑥 + 𝐾) + 𝑀)))
161160mpteq2dva 4672 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) = (𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀))))
162161fveq1d 6105 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)))‘𝑦) = ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ (𝑊‘((𝑥 + 𝐾) + 𝑀)))‘𝑦))
16325adantr 480 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → (𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(#‘𝑊))))
16431, 33, 353anim123i 1240 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ))
1651643expa 1257 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ ∧ 𝐾 ∈ ℂ))
166165, 38syl 17 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ 𝐾 ∈ ℤ) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
167166exp31 628 . . . . . . . . . . . . . . 15 (𝑀 ∈ ℤ → (𝐿 ∈ ℤ → (𝐾 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
168167com3l 87 . . . . . . . . . . . . . 14 (𝐿 ∈ ℤ → (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
16929, 168syl 17 . . . . . . . . . . . . 13 (𝐿 ∈ (𝐾...(𝑁𝑀)) → (𝐾 ∈ ℤ → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
17030, 169mpan9 485 . . . . . . . . . . . 12 ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝑀 ∈ ℤ → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
17128, 170syl5com 31 . . . . . . . . . . 11 (𝑀 ∈ (0...𝑁) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
1721713ad2ant3 1077 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾))))
173172imp 444 . . . . . . . . 9 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝐿𝐾) = ((𝑀 + 𝐿) − (𝑀 + 𝐾)))
174173oveq2d 6565 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (0..^(𝐿𝐾)) = (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
175174eleq2d 2673 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑦 ∈ (0..^(𝐿𝐾)) ↔ 𝑦 ∈ (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))))
176175biimpa 500 . . . . . 6 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → 𝑦 ∈ (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾))))
177 swrdfv 13276 . . . . . 6 (((𝑊 ∈ Word 𝑉 ∧ (𝑀 + 𝐾) ∈ (0...(𝑀 + 𝐿)) ∧ (𝑀 + 𝐿) ∈ (0...(#‘𝑊))) ∧ 𝑦 ∈ (0..^((𝑀 + 𝐿) − (𝑀 + 𝐾)))) → ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)‘𝑦) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
178163, 176, 177syl2anc 691 . . . . 5 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)‘𝑦) = (𝑊‘(𝑦 + (𝑀 + 𝐾))))
17973, 162, 1783eqtr4d 2654 . . . 4 ((((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) ∧ 𝑦 ∈ (0..^(𝐿𝐾))) → ((𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾)))‘𝑦) = ((𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)‘𝑦))
18024, 47, 179eqfnfvd 6222 . . 3 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → (𝑥 ∈ (0..^(𝐿𝐾)) ↦ ((𝑊 substr ⟨𝑀, 𝑁⟩)‘(𝑥 + 𝐾))) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩))
18120, 180eqtrd 2644 . 2 (((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) ∧ (𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀)))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩))
182181ex 449 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ (0...(#‘𝑊)) ∧ 𝑀 ∈ (0...𝑁)) → ((𝐾 ∈ (0...(𝑁𝑀)) ∧ 𝐿 ∈ (𝐾...(𝑁𝑀))) → ((𝑊 substr ⟨𝑀, 𝑁⟩) substr ⟨𝐾, 𝐿⟩) = (𝑊 substr ⟨(𝑀 + 𝐾), (𝑀 + 𝐿)⟩)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173   ⊆ wss 3540  ⟨cop 4131   class class class wbr 4583   ↦ cmpt 4643   Fn wfn 5799  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  0cc0 9815   + caddc 9818   < clt 9953   ≤ cle 9954   − cmin 10145  ℕcn 10897  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146   substr csubstr 13150 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-substr 13158 This theorem is referenced by:  swrd0swrd  13313  swrdswrd0  13314
 Copyright terms: Public domain W3C validator