MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sadeq Structured version   Visualization version   GIF version

Theorem sadeq 15032
Description: Any element of a sequence sum only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 9-Sep-2016.)
Hypotheses
Ref Expression
sadeq.a (𝜑𝐴 ⊆ ℕ0)
sadeq.b (𝜑𝐵 ⊆ ℕ0)
sadeq.n (𝜑𝑁 ∈ ℕ0)
Assertion
Ref Expression
sadeq (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))

Proof of Theorem sadeq
Dummy variables 𝑚 𝑐 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inass 3785 . . . . . . . 8 ((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐴 ∩ ((0..^𝑁) ∩ (0..^𝑁)))
2 inidm 3784 . . . . . . . . 9 ((0..^𝑁) ∩ (0..^𝑁)) = (0..^𝑁)
32ineq2i 3773 . . . . . . . 8 (𝐴 ∩ ((0..^𝑁) ∩ (0..^𝑁))) = (𝐴 ∩ (0..^𝑁))
41, 3eqtri 2632 . . . . . . 7 ((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐴 ∩ (0..^𝑁))
54fveq2i 6106 . . . . . 6 ((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁)))
6 inass 3785 . . . . . . . 8 ((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐵 ∩ ((0..^𝑁) ∩ (0..^𝑁)))
72ineq2i 3773 . . . . . . . 8 (𝐵 ∩ ((0..^𝑁) ∩ (0..^𝑁))) = (𝐵 ∩ (0..^𝑁))
86, 7eqtri 2632 . . . . . . 7 ((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)) = (𝐵 ∩ (0..^𝑁))
98fveq2i 6106 . . . . . 6 ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))
105, 9oveq12i 6561 . . . . 5 (((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)))) = (((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁))))
1110oveq1i 6559 . . . 4 ((((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁))
12 inss1 3795 . . . . . 6 (𝐴 ∩ (0..^𝑁)) ⊆ 𝐴
13 sadeq.a . . . . . 6 (𝜑𝐴 ⊆ ℕ0)
1412, 13syl5ss 3579 . . . . 5 (𝜑 → (𝐴 ∩ (0..^𝑁)) ⊆ ℕ0)
15 inss1 3795 . . . . . 6 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
16 sadeq.b . . . . . 6 (𝜑𝐵 ⊆ ℕ0)
1715, 16syl5ss 3579 . . . . 5 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
18 eqid 2610 . . . . 5 seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 ∩ (0..^𝑁)), 𝑚 ∈ (𝐵 ∩ (0..^𝑁)), ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚 ∈ (𝐴 ∩ (0..^𝑁)), 𝑚 ∈ (𝐵 ∩ (0..^𝑁)), ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
19 sadeq.n . . . . 5 (𝜑𝑁 ∈ ℕ0)
20 eqid 2610 . . . . 5 (bits ↾ ℕ0) = (bits ↾ ℕ0)
2114, 17, 18, 19, 20sadadd3 15021 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘((𝐴 ∩ (0..^𝑁)) ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘((𝐵 ∩ (0..^𝑁)) ∩ (0..^𝑁)))) mod (2↑𝑁)))
22 eqid 2610 . . . . 5 seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1)))) = seq0((𝑐 ∈ 2𝑜, 𝑚 ∈ ℕ0 ↦ if(cadd(𝑚𝐴, 𝑚𝐵, ∅ ∈ 𝑐), 1𝑜, ∅)), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
2313, 16, 22, 19, 20sadadd3 15021 . . . 4 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((((bits ↾ ℕ0)‘(𝐴 ∩ (0..^𝑁))) + ((bits ↾ ℕ0)‘(𝐵 ∩ (0..^𝑁)))) mod (2↑𝑁)))
2411, 21, 233eqtr4a 2670 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)))
25 inss1 3795 . . . . . . . 8 (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ ((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁)))
26 sadcl 15022 . . . . . . . . 9 (((𝐴 ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0) → ((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ⊆ ℕ0)
2714, 17, 26syl2anc 691 . . . . . . . 8 (𝜑 → ((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ⊆ ℕ0)
2825, 27syl5ss 3579 . . . . . . 7 (𝜑 → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ ℕ0)
29 fzofi 12635 . . . . . . . . 9 (0..^𝑁) ∈ Fin
3029a1i 11 . . . . . . . 8 (𝜑 → (0..^𝑁) ∈ Fin)
31 inss2 3796 . . . . . . . 8 (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
32 ssfi 8065 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ Fin)
3330, 31, 32sylancl 693 . . . . . . 7 (𝜑 → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ Fin)
34 elfpw 8151 . . . . . . 7 ((((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ ((((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ Fin))
3528, 33, 34sylanbrc 695 . . . . . 6 (𝜑 → (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
36 bitsf1o 15005 . . . . . . . 8 (bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin)
37 f1ocnv 6062 . . . . . . . 8 ((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) → (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0)
38 f1of 6050 . . . . . . . 8 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0)
3936, 37, 38mp2b 10 . . . . . . 7 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)⟶ℕ0
4039ffvelrni 6266 . . . . . 6 ((((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℕ0)
4135, 40syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℕ0)
4241nn0red 11229 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℝ)
43 2rp 11713 . . . . . 6 2 ∈ ℝ+
4443a1i 11 . . . . 5 (𝜑 → 2 ∈ ℝ+)
4519nn0zd 11356 . . . . 5 (𝜑𝑁 ∈ ℤ)
4644, 45rpexpcld 12894 . . . 4 (𝜑 → (2↑𝑁) ∈ ℝ+)
4741nn0ge0d 11231 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
48 fvres 6117 . . . . . . . . 9 (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℕ0 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))))
4941, 48syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))))
50 f1ocnvfv2 6433 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
5136, 35, 50sylancr 694 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
5249, 51eqtr3d 2646 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
5352, 31syl6eqss 3618 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
5441nn0zd 11356 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℤ)
55 bitsfzo 14995 . . . . . . 7 ((((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
5654, 19, 55syl2anc 691 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
5753, 56mpbird 246 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
58 elfzolt2 12348 . . . . 5 (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) < (2↑𝑁))
5957, 58syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) < (2↑𝑁))
60 modid 12557 . . . 4 (((((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
6142, 46, 47, 59, 60syl22anc 1319 . . 3 (𝜑 → (((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
62 inss1 3795 . . . . . . . 8 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (𝐴 sadd 𝐵)
63 sadcl 15022 . . . . . . . . 9 ((𝐴 ⊆ ℕ0𝐵 ⊆ ℕ0) → (𝐴 sadd 𝐵) ⊆ ℕ0)
6413, 16, 63syl2anc 691 . . . . . . . 8 (𝜑 → (𝐴 sadd 𝐵) ⊆ ℕ0)
6562, 64syl5ss 3579 . . . . . . 7 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0)
66 inss2 3796 . . . . . . . 8 ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)
67 ssfi 8065 . . . . . . . 8 (((0..^𝑁) ∈ Fin ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ (0..^𝑁)) → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
6830, 66, 67sylancl 693 . . . . . . 7 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin)
69 elfpw 8151 . . . . . . 7 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ↔ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ⊆ ℕ0 ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ Fin))
7065, 68, 69sylanbrc 695 . . . . . 6 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))
7139ffvelrni 6266 . . . . . 6 (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
7270, 71syl 17 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0)
7372nn0red 11229 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℝ)
7472nn0ge0d 11231 . . . 4 (𝜑 → 0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
75 fvres 6117 . . . . . . . . 9 (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℕ0 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))))
7672, 75syl 17 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))))
77 f1ocnvfv2 6433 . . . . . . . . 9 (((bits ↾ ℕ0):ℕ01-1-onto→(𝒫 ℕ0 ∩ Fin) ∧ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
7836, 70, 77sylancr 694 . . . . . . . 8 (𝜑 → ((bits ↾ ℕ0)‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
7976, 78eqtr3d 2646 . . . . . . 7 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) = ((𝐴 sadd 𝐵) ∩ (0..^𝑁)))
8079, 66syl6eqss 3618 . . . . . 6 (𝜑 → (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) ⊆ (0..^𝑁))
8172nn0zd 11356 . . . . . . 7 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ)
82 bitsfzo 14995 . . . . . . 7 ((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
8381, 19, 82syl2anc 691 . . . . . 6 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) ↔ (bits‘((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁)))) ⊆ (0..^𝑁)))
8480, 83mpbird 246 . . . . 5 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)))
85 elfzolt2 12348 . . . . 5 (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ (0..^(2↑𝑁)) → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) < (2↑𝑁))
8684, 85syl 17 . . . 4 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) < (2↑𝑁))
87 modid 12557 . . . 4 (((((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∈ ℝ ∧ (2↑𝑁) ∈ ℝ+) ∧ (0 ≤ ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) ∧ ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) < (2↑𝑁))) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
8873, 46, 74, 86, 87syl22anc 1319 . . 3 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) mod (2↑𝑁)) = ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))))
8924, 61, 883eqtr3rd 2653 . 2 (𝜑 → ((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
90 f1of1 6049 . . . . 5 ((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1-onto→ℕ0(bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0)
9136, 37, 90mp2b 10 . . . 4 (bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0
92 f1fveq 6420 . . . 4 (((bits ↾ ℕ0):(𝒫 ℕ0 ∩ Fin)–1-1→ℕ0 ∧ (((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin))) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ↔ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
9391, 92mpan 702 . . 3 ((((𝐴 sadd 𝐵) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin) ∧ (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ∈ (𝒫 ℕ0 ∩ Fin)) → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ↔ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
9470, 35, 93syl2anc 691 . 2 (𝜑 → (((bits ↾ ℕ0)‘((𝐴 sadd 𝐵) ∩ (0..^𝑁))) = ((bits ↾ ℕ0)‘(((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))) ↔ ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
9589, 94mpbid 221 1 (𝜑 → ((𝐴 sadd 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) sadd (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  caddwcad 1536  wcel 1977  cin 3539  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  ccnv 5037  cres 5040  wf 5800  1-1wf1 5801  1-1-ontowf1o 5803  cfv 5804  (class class class)co 6549  cmpt2 6551  1𝑜c1o 7440  2𝑜c2o 7441  Fincfn 7841  cr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  2c2 10947  0cn0 11169  cz 11254  +crp 11708  ..^cfzo 12334   mod cmo 12530  seqcseq 12663  cexp 12722  bitscbits 14979   sadd csad 14980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-xor 1457  df-tru 1478  df-fal 1481  df-had 1524  df-cad 1537  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-bits 14982  df-sad 15011
This theorem is referenced by:  smuval2  15042  smueqlem  15050
  Copyright terms: Public domain W3C validator