MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smueqlem Structured version   Visualization version   GIF version

Theorem smueqlem 15050
Description: Any element of a sequence multiplication only depends on the values of the argument sequences up to and including that point. (Contributed by Mario Carneiro, 20-Sep-2016.)
Hypotheses
Ref Expression
smueq.a (𝜑𝐴 ⊆ ℕ0)
smueq.b (𝜑𝐵 ⊆ ℕ0)
smueq.n (𝜑𝑁 ∈ ℕ0)
smueq.p 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
smueq.q 𝑄 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ (𝐵 ∩ (0..^𝑁)))})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
Assertion
Ref Expression
smueqlem (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
Distinct variable groups:   𝑚,𝑛,𝑝,𝐴   𝐵,𝑚,𝑛,𝑝   𝑚,𝑁,𝑛,𝑝   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝑃(𝑚,𝑛,𝑝)   𝑄(𝑚,𝑛,𝑝)

Proof of Theorem smueqlem
Dummy variables 𝑘 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smueq.a . . . . . . . 8 (𝜑𝐴 ⊆ ℕ0)
21adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐴 ⊆ ℕ0)
3 smueq.b . . . . . . . 8 (𝜑𝐵 ⊆ ℕ0)
43adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝐵 ⊆ ℕ0)
5 smueq.p . . . . . . 7 𝑃 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ 𝐵)})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
6 elfzouz 12343 . . . . . . . . 9 (𝑘 ∈ (0..^𝑁) → 𝑘 ∈ (ℤ‘0))
76adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ (ℤ‘0))
8 nn0uz 11598 . . . . . . . 8 0 = (ℤ‘0)
97, 8syl6eleqr 2699 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℕ0)
109nn0zd 11356 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 ∈ ℤ)
1110peano2zd 11361 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ∈ ℤ)
12 smueq.n . . . . . . . . . 10 (𝜑𝑁 ∈ ℕ0)
1312adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
1413nn0zd 11356 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ ℤ)
15 elfzolt2 12348 . . . . . . . . . 10 (𝑘 ∈ (0..^𝑁) → 𝑘 < 𝑁)
1615adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑘 < 𝑁)
17 nn0ltp1le 11312 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑘 < 𝑁 ↔ (𝑘 + 1) ≤ 𝑁))
189, 13, 17syl2anc 691 . . . . . . . . 9 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 < 𝑁 ↔ (𝑘 + 1) ≤ 𝑁))
1916, 18mpbid 221 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 + 1) ≤ 𝑁)
20 eluz2 11569 . . . . . . . 8 (𝑁 ∈ (ℤ‘(𝑘 + 1)) ↔ ((𝑘 + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ (𝑘 + 1) ≤ 𝑁))
2111, 14, 19, 20syl3anbrc 1239 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → 𝑁 ∈ (ℤ‘(𝑘 + 1)))
222, 4, 5, 9, 21smuval2 15042 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ (𝑃𝑁)))
2312, 8syl6eleq 2698 . . . . . . . . . . 11 (𝜑𝑁 ∈ (ℤ‘0))
24 eluzfz2b 12221 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) ↔ 𝑁 ∈ (0...𝑁))
2523, 24sylib 207 . . . . . . . . . 10 (𝜑𝑁 ∈ (0...𝑁))
26 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑃𝑥) = (𝑃‘0))
2726ineq1d 3775 . . . . . . . . . . . . 13 (𝑥 = 0 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃‘0) ∩ (0..^𝑁)))
28 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑄𝑥) = (𝑄‘0))
2928ineq1d 3775 . . . . . . . . . . . . 13 (𝑥 = 0 → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))
3027, 29eqeq12d 2625 . . . . . . . . . . . 12 (𝑥 = 0 → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁))))
3130imbi2d 329 . . . . . . . . . . 11 (𝑥 = 0 → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))))
32 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = 𝑖 → (𝑃𝑥) = (𝑃𝑖))
3332ineq1d 3775 . . . . . . . . . . . . 13 (𝑥 = 𝑖 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃𝑖) ∩ (0..^𝑁)))
34 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = 𝑖 → (𝑄𝑥) = (𝑄𝑖))
3534ineq1d 3775 . . . . . . . . . . . . 13 (𝑥 = 𝑖 → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)))
3633, 35eqeq12d 2625 . . . . . . . . . . . 12 (𝑥 = 𝑖 → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁))))
3736imbi2d 329 . . . . . . . . . . 11 (𝑥 = 𝑖 → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)))))
38 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = (𝑖 + 1) → (𝑃𝑥) = (𝑃‘(𝑖 + 1)))
3938ineq1d 3775 . . . . . . . . . . . . 13 (𝑥 = (𝑖 + 1) → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)))
40 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = (𝑖 + 1) → (𝑄𝑥) = (𝑄‘(𝑖 + 1)))
4140ineq1d 3775 . . . . . . . . . . . . 13 (𝑥 = (𝑖 + 1) → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))
4239, 41eqeq12d 2625 . . . . . . . . . . . 12 (𝑥 = (𝑖 + 1) → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))))
4342imbi2d 329 . . . . . . . . . . 11 (𝑥 = (𝑖 + 1) → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))))
44 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑃𝑥) = (𝑃𝑁))
4544ineq1d 3775 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑃𝑁) ∩ (0..^𝑁)))
46 fveq2 6103 . . . . . . . . . . . . . 14 (𝑥 = 𝑁 → (𝑄𝑥) = (𝑄𝑁))
4746ineq1d 3775 . . . . . . . . . . . . 13 (𝑥 = 𝑁 → ((𝑄𝑥) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))
4845, 47eqeq12d 2625 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁)) ↔ ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁))))
4948imbi2d 329 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝜑 → ((𝑃𝑥) ∩ (0..^𝑁)) = ((𝑄𝑥) ∩ (0..^𝑁))) ↔ (𝜑 → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))))
501, 3, 5smup0 15039 . . . . . . . . . . . . . 14 (𝜑 → (𝑃‘0) = ∅)
51 inss1 3795 . . . . . . . . . . . . . . . 16 (𝐵 ∩ (0..^𝑁)) ⊆ 𝐵
5251, 3syl5ss 3579 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
53 smueq.q . . . . . . . . . . . . . . 15 𝑄 = seq0((𝑝 ∈ 𝒫 ℕ0, 𝑚 ∈ ℕ0 ↦ (𝑝 sadd {𝑛 ∈ ℕ0 ∣ (𝑚𝐴 ∧ (𝑛𝑚) ∈ (𝐵 ∩ (0..^𝑁)))})), (𝑛 ∈ ℕ0 ↦ if(𝑛 = 0, ∅, (𝑛 − 1))))
541, 52, 53smup0 15039 . . . . . . . . . . . . . 14 (𝜑 → (𝑄‘0) = ∅)
5550, 54eqtr4d 2647 . . . . . . . . . . . . 13 (𝜑 → (𝑃‘0) = (𝑄‘0))
5655ineq1d 3775 . . . . . . . . . . . 12 (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁)))
5756a1i 11 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘0) → (𝜑 → ((𝑃‘0) ∩ (0..^𝑁)) = ((𝑄‘0) ∩ (0..^𝑁))))
58 oveq1 6556 . . . . . . . . . . . . . . 15 (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → (((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) = (((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))))
5958ineq1d 3775 . . . . . . . . . . . . . 14 (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
601adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝐴 ⊆ ℕ0)
613adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝐵 ⊆ ℕ0)
62 elfzonn0 12380 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^𝑁) → 𝑖 ∈ ℕ0)
6362adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0)
6460, 61, 5, 63smupp1 15040 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑃‘(𝑖 + 1)) = ((𝑃𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}))
6564ineq1d 3775 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = (((𝑃𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}) ∩ (0..^𝑁)))
661, 3, 5smupf 15038 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃:ℕ0⟶𝒫 ℕ0)
67 ffvelrn 6265 . . . . . . . . . . . . . . . . . . 19 ((𝑃:ℕ0⟶𝒫 ℕ0𝑖 ∈ ℕ0) → (𝑃𝑖) ∈ 𝒫 ℕ0)
6866, 62, 67syl2an 493 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑃𝑖) ∈ 𝒫 ℕ0)
6968elpwid 4118 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑃𝑖) ⊆ ℕ0)
70 ssrab2 3650 . . . . . . . . . . . . . . . . . 18 {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ⊆ ℕ0
7170a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ⊆ ℕ0)
7212adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ0)
7369, 71, 72sadeq 15032 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑃𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}) ∩ (0..^𝑁)) = ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
7465, 73eqtrd 2644 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
7552adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
7660, 75, 53, 63smupp1 15040 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑄‘(𝑖 + 1)) = ((𝑄𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}))
7776ineq1d 3775 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) = (((𝑄𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}) ∩ (0..^𝑁)))
781, 52, 53smupf 15038 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑄:ℕ0⟶𝒫 ℕ0)
79 ffvelrn 6265 . . . . . . . . . . . . . . . . . . 19 ((𝑄:ℕ0⟶𝒫 ℕ0𝑖 ∈ ℕ0) → (𝑄𝑖) ∈ 𝒫 ℕ0)
8078, 62, 79syl2an 493 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑄𝑖) ∈ 𝒫 ℕ0)
8180elpwid 4118 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (𝑄𝑖) ⊆ ℕ0)
82 ssrab2 3650 . . . . . . . . . . . . . . . . . 18 {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ⊆ ℕ0
8382a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ⊆ ℕ0)
8481, 83, 72sadeq 15032 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑄𝑖) sadd {𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
85 inss2 3796 . . . . . . . . . . . . . . . . . . . . . 22 (ℕ0 ∩ (0..^𝑁)) ⊆ (0..^𝑁)
8685sseli 3564 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) → 𝑛 ∈ (0..^𝑁))
8761adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝐵 ⊆ ℕ0)
8887sseld 3567 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ 𝐵 → (𝑛𝑖) ∈ ℕ0))
89 elfzo0 12376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 ∈ (0..^𝑁) ↔ (𝑛 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝑛 < 𝑁))
9089simp2bi 1070 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 ∈ (0..^𝑁) → 𝑁 ∈ ℕ)
9190adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℕ)
92 elfzonn0 12380 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑛 ∈ (0..^𝑁) → 𝑛 ∈ ℕ0)
9392adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℕ0)
9493nn0red 11229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 ∈ ℝ)
9563adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑖 ∈ ℕ0)
9695nn0red 11229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑖 ∈ ℝ)
9794, 96resubcld 10337 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛𝑖) ∈ ℝ)
9891nnred 10912 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑁 ∈ ℝ)
9995nn0ge0d 11231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 0 ≤ 𝑖)
10094, 96subge02d 10498 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (0 ≤ 𝑖 ↔ (𝑛𝑖) ≤ 𝑛))
10199, 100mpbid 221 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛𝑖) ≤ 𝑛)
102 elfzolt2 12348 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 ∈ (0..^𝑁) → 𝑛 < 𝑁)
103102adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → 𝑛 < 𝑁)
10497, 94, 98, 101, 103lelttrd 10074 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑛𝑖) < 𝑁)
10591, 104jca 553 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁))
106 elfzo0 12376 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑛𝑖) ∈ (0..^𝑁) ↔ ((𝑛𝑖) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁))
107 3anass 1035 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑛𝑖) ∈ ℕ0𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁) ↔ ((𝑛𝑖) ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁)))
108106, 107bitri 263 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑛𝑖) ∈ (0..^𝑁) ↔ ((𝑛𝑖) ∈ ℕ0 ∧ (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁)))
109108baib 942 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛𝑖) ∈ ℕ0 → ((𝑛𝑖) ∈ (0..^𝑁) ↔ (𝑁 ∈ ℕ ∧ (𝑛𝑖) < 𝑁)))
110105, 109syl5ibrcom 236 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ ℕ0 → (𝑛𝑖) ∈ (0..^𝑁)))
11188, 110syld 46 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ 𝐵 → (𝑛𝑖) ∈ (0..^𝑁)))
112111pm4.71rd 665 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ 𝐵 ↔ ((𝑛𝑖) ∈ (0..^𝑁) ∧ (𝑛𝑖) ∈ 𝐵)))
113 ancom 465 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑛𝑖) ∈ (0..^𝑁) ∧ (𝑛𝑖) ∈ 𝐵) ↔ ((𝑛𝑖) ∈ 𝐵 ∧ (𝑛𝑖) ∈ (0..^𝑁)))
114 elin 3758 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)) ↔ ((𝑛𝑖) ∈ 𝐵 ∧ (𝑛𝑖) ∈ (0..^𝑁)))
115113, 114bitr4i 266 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑛𝑖) ∈ (0..^𝑁) ∧ (𝑛𝑖) ∈ 𝐵) ↔ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))
116112, 115syl6rbb 276 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)) ↔ (𝑛𝑖) ∈ 𝐵))
117116anbi2d 736 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (0..^𝑁)) → ((𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁))) ↔ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)))
11886, 117sylan2 490 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑖 ∈ (0..^𝑁)) ∧ 𝑛 ∈ (ℕ0 ∩ (0..^𝑁))) → ((𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁))) ↔ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)))
119118rabbidva 3163 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑖 ∈ (0..^𝑁)) → {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)})
120 inrab2 3859 . . . . . . . . . . . . . . . . . . 19 ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁)) = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))}
121 inrab2 3859 . . . . . . . . . . . . . . . . . . 19 ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁)) = {𝑛 ∈ (ℕ0 ∩ (0..^𝑁)) ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)}
122119, 120, 1213eqtr4g 2669 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑖 ∈ (0..^𝑁)) → ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁)) = ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁)))
123122oveq2d 6565 . . . . . . . . . . . . . . . . 17 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) = (((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))))
124123ineq1d 3775 . . . . . . . . . . . . . . . 16 ((𝜑𝑖 ∈ (0..^𝑁)) → ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ (𝐵 ∩ (0..^𝑁)))} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
12577, 84, 1243eqtrd 2648 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑁)) → ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)))
12674, 125eqeq12d 2625 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)) ↔ ((((𝑃𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁)) = ((((𝑄𝑖) ∩ (0..^𝑁)) sadd ({𝑛 ∈ ℕ0 ∣ (𝑖𝐴 ∧ (𝑛𝑖) ∈ 𝐵)} ∩ (0..^𝑁))) ∩ (0..^𝑁))))
12759, 126syl5ibr 235 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑁)) → (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁))))
128127expcom 450 . . . . . . . . . . . 12 (𝑖 ∈ (0..^𝑁) → (𝜑 → (((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁)) → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))))
129128a2d 29 . . . . . . . . . . 11 (𝑖 ∈ (0..^𝑁) → ((𝜑 → ((𝑃𝑖) ∩ (0..^𝑁)) = ((𝑄𝑖) ∩ (0..^𝑁))) → (𝜑 → ((𝑃‘(𝑖 + 1)) ∩ (0..^𝑁)) = ((𝑄‘(𝑖 + 1)) ∩ (0..^𝑁)))))
13031, 37, 43, 49, 57, 129fzind2 12448 . . . . . . . . . 10 (𝑁 ∈ (0...𝑁) → (𝜑 → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁))))
13125, 130mpcom 37 . . . . . . . . 9 (𝜑 → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))
132131adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → ((𝑃𝑁) ∩ (0..^𝑁)) = ((𝑄𝑁) ∩ (0..^𝑁)))
133132eleq2d 2673 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁))))
134 elin 3758 . . . . . . . . 9 (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝑃𝑁) ∧ 𝑘 ∈ (0..^𝑁)))
135134rbaib 945 . . . . . . . 8 (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑃𝑁)))
136135adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑃𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑃𝑁)))
137 elin 3758 . . . . . . . . 9 (𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝑄𝑁) ∧ 𝑘 ∈ (0..^𝑁)))
138137rbaib 945 . . . . . . . 8 (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑄𝑁)))
139138adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ ((𝑄𝑁) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (𝑄𝑁)))
140133, 136, 1393bitr3d 297 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝑃𝑁) ↔ 𝑘 ∈ (𝑄𝑁)))
14152adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝐵 ∩ (0..^𝑁)) ⊆ ℕ0)
1422, 141, 53, 13smupval 15048 . . . . . . 7 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑄𝑁) = ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))))
143142eleq2d 2673 . . . . . 6 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝑄𝑁) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁)))))
14422, 140, 1433bitrd 293 . . . . 5 ((𝜑𝑘 ∈ (0..^𝑁)) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁)))))
145144ex 449 . . . 4 (𝜑 → (𝑘 ∈ (0..^𝑁) → (𝑘 ∈ (𝐴 smul 𝐵) ↔ 𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))))))
146145pm5.32rd 670 . . 3 (𝜑 → ((𝑘 ∈ (𝐴 smul 𝐵) ∧ 𝑘 ∈ (0..^𝑁)) ↔ (𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∧ 𝑘 ∈ (0..^𝑁))))
147 elin 3758 . . 3 (𝑘 ∈ ((𝐴 smul 𝐵) ∩ (0..^𝑁)) ↔ (𝑘 ∈ (𝐴 smul 𝐵) ∧ 𝑘 ∈ (0..^𝑁)))
148 elin 3758 . . 3 (𝑘 ∈ (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)) ↔ (𝑘 ∈ ((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∧ 𝑘 ∈ (0..^𝑁)))
149146, 147, 1483bitr4g 302 . 2 (𝜑 → (𝑘 ∈ ((𝐴 smul 𝐵) ∩ (0..^𝑁)) ↔ 𝑘 ∈ (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁))))
150149eqrdv 2608 1 (𝜑 → ((𝐴 smul 𝐵) ∩ (0..^𝑁)) = (((𝐴 ∩ (0..^𝑁)) smul (𝐵 ∩ (0..^𝑁))) ∩ (0..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  {crab 2900  cin 3539  wss 3540  c0 3874  ifcif 4036  𝒫 cpw 4108   class class class wbr 4583  cmpt 4643  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953  cle 9954  cmin 10145  cn 10897  0cn0 11169  cz 11254  cuz 11563  ...cfz 12197  ..^cfzo 12334  seqcseq 12663   sadd csad 14980   smul csmu 14981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-xor 1457  df-tru 1478  df-fal 1481  df-had 1524  df-cad 1537  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-dvds 14822  df-bits 14982  df-sad 15011  df-smu 15036
This theorem is referenced by:  smueq  15051
  Copyright terms: Public domain W3C validator