Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmulccn Structured version   Visualization version   GIF version

Theorem rmulccn 29302
Description: Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.)
Hypotheses
Ref Expression
rmulccn.1 𝐽 = (topGen‘ran (,))
rmulccn.2 (𝜑𝐶 ∈ ℝ)
Assertion
Ref Expression
rmulccn (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem rmulccn
Dummy variables 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
21cnfldtopon 22396 . . . . . 6 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
32a1i 11 . . . . 5 (𝜑 → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
43cnmptid 21274 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
5 rmulccn.2 . . . . . . 7 (𝜑𝐶 ∈ ℝ)
65recnd 9947 . . . . . 6 (𝜑𝐶 ∈ ℂ)
73, 3, 6cnmptc 21275 . . . . 5 (𝜑 → (𝑥 ∈ ℂ ↦ 𝐶) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
8 ax-mulf 9895 . . . . . . . . 9 · :(ℂ × ℂ)⟶ℂ
9 ffn 5958 . . . . . . . . 9 ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ))
108, 9ax-mp 5 . . . . . . . 8 · Fn (ℂ × ℂ)
11 fnov 6666 . . . . . . . 8 ( · Fn (ℂ × ℂ) ↔ · = (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)))
1210, 11mpbi 219 . . . . . . 7 · = (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧))
131mulcn 22478 . . . . . . 7 · ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1412, 13eqeltrri 2685 . . . . . 6 (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
1514a1i 11 . . . . 5 (𝜑 → (𝑦 ∈ ℂ, 𝑧 ∈ ℂ ↦ (𝑦 · 𝑧)) ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
16 oveq12 6558 . . . . 5 ((𝑦 = 𝑥𝑧 = 𝐶) → (𝑦 · 𝑧) = (𝑥 · 𝐶))
173, 4, 7, 3, 3, 15, 16cnmpt12 21280 . . . 4 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)))
18 ax-resscn 9872 . . . 4 ℝ ⊆ ℂ
192toponunii 20547 . . . . 5 ℂ = (TopOpen‘ℂfld)
2019cnrest 20899 . . . 4 (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ℝ ⊆ ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)))
2117, 18, 20sylancl 693 . . 3 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)))
22 simpr 476 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
236adantr 480 . . . . . . . . 9 ((𝜑𝑥 ∈ ℂ) → 𝐶 ∈ ℂ)
2422, 23mulcld 9939 . . . . . . . 8 ((𝜑𝑥 ∈ ℂ) → (𝑥 · 𝐶) ∈ ℂ)
2524ralrimiva 2949 . . . . . . 7 (𝜑 → ∀𝑥 ∈ ℂ (𝑥 · 𝐶) ∈ ℂ)
26 eqid 2610 . . . . . . . 8 (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) = (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶))
2726fnmpt 5933 . . . . . . 7 (∀𝑥 ∈ ℂ (𝑥 · 𝐶) ∈ ℂ → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ)
2825, 27syl 17 . . . . . 6 (𝜑 → (𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ)
29 fnssres 5918 . . . . . 6 (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) Fn ℂ ∧ ℝ ⊆ ℂ) → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ)
3028, 18, 29sylancl 693 . . . . 5 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ)
31 simpr 476 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ) → 𝑤 ∈ ℝ)
32 fvres 6117 . . . . . . . . 9 (𝑤 ∈ ℝ → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶))‘𝑤))
33 recn 9905 . . . . . . . . . 10 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
34 oveq1 6556 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑥 · 𝐶) = (𝑤 · 𝐶))
35 ovex 6577 . . . . . . . . . . 11 (𝑤 · 𝐶) ∈ V
3634, 26, 35fvmpt 6191 . . . . . . . . . 10 (𝑤 ∈ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶))‘𝑤) = (𝑤 · 𝐶))
3733, 36syl 17 . . . . . . . . 9 (𝑤 ∈ ℝ → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶))‘𝑤) = (𝑤 · 𝐶))
3832, 37eqtrd 2644 . . . . . . . 8 (𝑤 ∈ ℝ → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶))
3931, 38syl 17 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) = (𝑤 · 𝐶))
405adantr 480 . . . . . . . 8 ((𝜑𝑤 ∈ ℝ) → 𝐶 ∈ ℝ)
4131, 40remulcld 9949 . . . . . . 7 ((𝜑𝑤 ∈ ℝ) → (𝑤 · 𝐶) ∈ ℝ)
4239, 41eqeltrd 2688 . . . . . 6 ((𝜑𝑤 ∈ ℝ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ)
4342ralrimiva 2949 . . . . 5 (𝜑 → ∀𝑤 ∈ ℝ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ)
44 fnfvrnss 6297 . . . . 5 ((((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) Fn ℝ ∧ ∀𝑤 ∈ ℝ (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ)‘𝑤) ∈ ℝ) → ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ)
4530, 43, 44syl2anc 691 . . . 4 (𝜑 → ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ)
4618a1i 11 . . . 4 (𝜑 → ℝ ⊆ ℂ)
47 cnrest2 20900 . . . 4 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ ran ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ⊆ ℝ ∧ ℝ ⊆ ℂ) → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
483, 45, 46, 47syl3anc 1318 . . 3 (𝜑 → (((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) ↔ ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ))))
4921, 48mpbid 221 . 2 (𝜑 → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)))
50 resmpt 5369 . . 3 (ℝ ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)))
5118, 50ax-mp 5 . 2 ((𝑥 ∈ ℂ ↦ (𝑥 · 𝐶)) ↾ ℝ) = (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶))
52 rmulccn.1 . . . . 5 𝐽 = (topGen‘ran (,))
531tgioo2 22414 . . . . 5 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
5452, 53eqtri 2632 . . . 4 𝐽 = ((TopOpen‘ℂfld) ↾t ℝ)
5554, 54oveq12i 6561 . . 3 (𝐽 Cn 𝐽) = (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ))
5655eqcomi 2619 . 2 (((TopOpen‘ℂfld) ↾t ℝ) Cn ((TopOpen‘ℂfld) ↾t ℝ)) = (𝐽 Cn 𝐽)
5749, 51, 563eltr3g 2704 1 (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wss 3540  cmpt 4643   × cxp 5036  ran crn 5039  cres 5040   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  cmpt2 6551  cc 9813  cr 9814   · cmul 9820  (,)cioo 12046  t crest 15904  TopOpenctopn 15905  topGenctg 15921  fldccnfld 19567  TopOnctopon 20518   Cn ccn 20838   ×t ctx 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937
This theorem is referenced by:  rrvmulc  29842
  Copyright terms: Public domain W3C validator