Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmulccn Structured version   Unicode version

Theorem rmulccn 28686
Description: Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.)
Hypotheses
Ref Expression
rmulccn.1  |-  J  =  ( topGen `  ran  (,) )
rmulccn.2  |-  ( ph  ->  C  e.  RR )
Assertion
Ref Expression
rmulccn  |-  ( ph  ->  ( x  e.  RR  |->  ( x  x.  C
) )  e.  ( J  Cn  J ) )
Distinct variable groups:    x, C    ph, x
Allowed substitution hint:    J( x)

Proof of Theorem rmulccn
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2428 . . . . . . 7  |-  ( TopOpen ` fld )  =  ( TopOpen ` fld )
21cnfldtopon 21745 . . . . . 6  |-  ( TopOpen ` fld )  e.  (TopOn `  CC )
32a1i 11 . . . . 5  |-  ( ph  ->  ( TopOpen ` fld )  e.  (TopOn `  CC ) )
43cnmptid 20618 . . . . 5  |-  ( ph  ->  ( x  e.  CC  |->  x )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
5 rmulccn.2 . . . . . . 7  |-  ( ph  ->  C  e.  RR )
65recnd 9620 . . . . . 6  |-  ( ph  ->  C  e.  CC )
73, 3, 6cnmptc 20619 . . . . 5  |-  ( ph  ->  ( x  e.  CC  |->  C )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
8 ax-mulf 9570 . . . . . . . . 9  |-  x.  :
( CC  X.  CC )
--> CC
9 ffn 5689 . . . . . . . . 9  |-  (  x.  : ( CC  X.  CC ) --> CC  ->  x.  Fn  ( CC  X.  CC ) )
108, 9ax-mp 5 . . . . . . . 8  |-  x.  Fn  ( CC  X.  CC )
11 fnov 6362 . . . . . . . 8  |-  (  x.  Fn  ( CC  X.  CC )  <->  x.  =  (
y  e.  CC , 
z  e.  CC  |->  ( y  x.  z ) ) )
1210, 11mpbi 211 . . . . . . 7  |-  x.  =  ( y  e.  CC ,  z  e.  CC  |->  ( y  x.  z
) )
131mulcn 21841 . . . . . . 7  |-  x.  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld ) )  Cn  ( TopOpen
` fld
) )
1412, 13eqeltrri 2503 . . . . . 6  |-  ( y  e.  CC ,  z  e.  CC  |->  ( y  x.  z ) )  e.  ( ( (
TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
)
1514a1i 11 . . . . 5  |-  ( ph  ->  ( y  e.  CC ,  z  e.  CC  |->  ( y  x.  z
) )  e.  ( ( ( TopOpen ` fld )  tX  ( TopOpen ` fld )
)  Cn  ( TopOpen ` fld )
) )
16 oveq12 6258 . . . . 5  |-  ( ( y  =  x  /\  z  =  C )  ->  ( y  x.  z
)  =  ( x  x.  C ) )
173, 4, 7, 3, 3, 15, 16cnmpt12 20624 . . . 4  |-  ( ph  ->  ( x  e.  CC  |->  ( x  x.  C
) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) ) )
18 ax-resscn 9547 . . . 4  |-  RR  C_  CC
192toponunii 19889 . . . . 5  |-  CC  =  U. ( TopOpen ` fld )
2019cnrest 20243 . . . 4  |-  ( ( ( x  e.  CC  |->  ( x  x.  C
) )  e.  ( ( TopOpen ` fld )  Cn  ( TopOpen
` fld
) )  /\  RR  C_  CC )  ->  (
( x  e.  CC  |->  ( x  x.  C
) )  |`  RR )  e.  ( ( (
TopOpen ` fld )t  RR )  Cn  ( TopOpen
` fld
) ) )
2117, 18, 20sylancl 666 . . 3  |-  ( ph  ->  ( ( x  e.  CC  |->  ( x  x.  C ) )  |`  RR )  e.  (
( ( TopOpen ` fld )t  RR )  Cn  ( TopOpen
` fld
) ) )
22 simpr 462 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  x  e.  CC )
236adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  CC )  ->  C  e.  CC )
2422, 23mulcld 9614 . . . . . . . 8  |-  ( (
ph  /\  x  e.  CC )  ->  ( x  x.  C )  e.  CC )
2524ralrimiva 2779 . . . . . . 7  |-  ( ph  ->  A. x  e.  CC  ( x  x.  C
)  e.  CC )
26 eqid 2428 . . . . . . . 8  |-  ( x  e.  CC  |->  ( x  x.  C ) )  =  ( x  e.  CC  |->  ( x  x.  C ) )
2726fnmpt 5665 . . . . . . 7  |-  ( A. x  e.  CC  (
x  x.  C )  e.  CC  ->  (
x  e.  CC  |->  ( x  x.  C ) )  Fn  CC )
2825, 27syl 17 . . . . . 6  |-  ( ph  ->  ( x  e.  CC  |->  ( x  x.  C
) )  Fn  CC )
29 fnssres 5650 . . . . . 6  |-  ( ( ( x  e.  CC  |->  ( x  x.  C
) )  Fn  CC  /\  RR  C_  CC )  ->  ( ( x  e.  CC  |->  ( x  x.  C ) )  |`  RR )  Fn  RR )
3028, 18, 29sylancl 666 . . . . 5  |-  ( ph  ->  ( ( x  e.  CC  |->  ( x  x.  C ) )  |`  RR )  Fn  RR )
31 simpr 462 . . . . . . . 8  |-  ( (
ph  /\  w  e.  RR )  ->  w  e.  RR )
32 fvres 5839 . . . . . . . . 9  |-  ( w  e.  RR  ->  (
( ( x  e.  CC  |->  ( x  x.  C ) )  |`  RR ) `  w )  =  ( ( x  e.  CC  |->  ( x  x.  C ) ) `
 w ) )
33 recn 9580 . . . . . . . . . 10  |-  ( w  e.  RR  ->  w  e.  CC )
34 oveq1 6256 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
x  x.  C )  =  ( w  x.  C ) )
35 ovex 6277 . . . . . . . . . . 11  |-  ( w  x.  C )  e. 
_V
3634, 26, 35fvmpt 5908 . . . . . . . . . 10  |-  ( w  e.  CC  ->  (
( x  e.  CC  |->  ( x  x.  C
) ) `  w
)  =  ( w  x.  C ) )
3733, 36syl 17 . . . . . . . . 9  |-  ( w  e.  RR  ->  (
( x  e.  CC  |->  ( x  x.  C
) ) `  w
)  =  ( w  x.  C ) )
3832, 37eqtrd 2462 . . . . . . . 8  |-  ( w  e.  RR  ->  (
( ( x  e.  CC  |->  ( x  x.  C ) )  |`  RR ) `  w )  =  ( w  x.  C ) )
3931, 38syl 17 . . . . . . 7  |-  ( (
ph  /\  w  e.  RR )  ->  ( ( ( x  e.  CC  |->  ( x  x.  C
) )  |`  RR ) `
 w )  =  ( w  x.  C
) )
405adantr 466 . . . . . . . 8  |-  ( (
ph  /\  w  e.  RR )  ->  C  e.  RR )
4131, 40remulcld 9622 . . . . . . 7  |-  ( (
ph  /\  w  e.  RR )  ->  ( w  x.  C )  e.  RR )
4239, 41eqeltrd 2506 . . . . . 6  |-  ( (
ph  /\  w  e.  RR )  ->  ( ( ( x  e.  CC  |->  ( x  x.  C
) )  |`  RR ) `
 w )  e.  RR )
4342ralrimiva 2779 . . . . 5  |-  ( ph  ->  A. w  e.  RR  ( ( ( x  e.  CC  |->  ( x  x.  C ) )  |`  RR ) `  w
)  e.  RR )
44 fnfvrnss 6010 . . . . 5  |-  ( ( ( ( x  e.  CC  |->  ( x  x.  C ) )  |`  RR )  Fn  RR  /\ 
A. w  e.  RR  ( ( ( x  e.  CC  |->  ( x  x.  C ) )  |`  RR ) `  w
)  e.  RR )  ->  ran  ( (
x  e.  CC  |->  ( x  x.  C ) )  |`  RR )  C_  RR )
4530, 43, 44syl2anc 665 . . . 4  |-  ( ph  ->  ran  ( ( x  e.  CC  |->  ( x  x.  C ) )  |`  RR )  C_  RR )
4618a1i 11 . . . 4  |-  ( ph  ->  RR  C_  CC )
47 cnrest2 20244 . . . 4  |-  ( ( ( TopOpen ` fld )  e.  (TopOn `  CC )  /\  ran  ( ( x  e.  CC  |->  ( x  x.  C ) )  |`  RR )  C_  RR  /\  RR  C_  CC )  -> 
( ( ( x  e.  CC  |->  ( x  x.  C ) )  |`  RR )  e.  ( ( ( TopOpen ` fld )t  RR )  Cn  ( TopOpen
` fld
) )  <->  ( (
x  e.  CC  |->  ( x  x.  C ) )  |`  RR )  e.  ( ( ( TopOpen ` fld )t  RR )  Cn  ( ( TopOpen ` fld )t  RR ) ) ) )
483, 45, 46, 47syl3anc 1264 . . 3  |-  ( ph  ->  ( ( ( x  e.  CC  |->  ( x  x.  C ) )  |`  RR )  e.  ( ( ( TopOpen ` fld )t  RR )  Cn  ( TopOpen
` fld
) )  <->  ( (
x  e.  CC  |->  ( x  x.  C ) )  |`  RR )  e.  ( ( ( TopOpen ` fld )t  RR )  Cn  ( ( TopOpen ` fld )t  RR ) ) ) )
4921, 48mpbid 213 . 2  |-  ( ph  ->  ( ( x  e.  CC  |->  ( x  x.  C ) )  |`  RR )  e.  (
( ( TopOpen ` fld )t  RR )  Cn  (
( TopOpen ` fld )t  RR ) ) )
50 resmpt 5116 . . 3  |-  ( RR  C_  CC  ->  ( (
x  e.  CC  |->  ( x  x.  C ) )  |`  RR )  =  ( x  e.  RR  |->  ( x  x.  C ) ) )
5118, 50ax-mp 5 . 2  |-  ( ( x  e.  CC  |->  ( x  x.  C ) )  |`  RR )  =  ( x  e.  RR  |->  ( x  x.  C ) )
52 rmulccn.1 . . . . 5  |-  J  =  ( topGen `  ran  (,) )
531tgioo2 21763 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  ( ( TopOpen ` fld )t  RR )
5452, 53eqtri 2450 . . . 4  |-  J  =  ( ( TopOpen ` fld )t  RR )
5554, 54oveq12i 6261 . . 3  |-  ( J  Cn  J )  =  ( ( ( TopOpen ` fld )t  RR )  Cn  ( ( TopOpen ` fld )t  RR ) )
5655eqcomi 2437 . 2  |-  ( ( ( TopOpen ` fld )t  RR )  Cn  (
( TopOpen ` fld )t  RR ) )  =  ( J  Cn  J
)
5749, 51, 563eltr3g 2522 1  |-  ( ph  ->  ( x  e.  RR  |->  ( x  x.  C
) )  e.  ( J  Cn  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2714    C_ wss 3379    |-> cmpt 4425    X. cxp 4794   ran crn 4797    |` cres 4798    Fn wfn 5539   -->wf 5540   ` cfv 5544  (class class class)co 6249    |-> cmpt2 6251   CCcc 9488   RRcr 9489    x. cmul 9495   (,)cioo 11586   ↾t crest 15262   TopOpenctopn 15263   topGenctg 15279  ℂfldccnfld 18913  TopOnctopon 19860    Cn ccn 20182    tX ctx 20517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-rep 4479  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-inf2 8099  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568  ax-mulf 9570
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-int 4199  df-iun 4244  df-iin 4245  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-se 4756  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-isom 5553  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-of 6489  df-om 6651  df-1st 6751  df-2nd 6752  df-supp 6870  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-1o 7137  df-2o 7138  df-oadd 7141  df-er 7318  df-map 7429  df-ixp 7478  df-en 7525  df-dom 7526  df-sdom 7527  df-fin 7528  df-fsupp 7837  df-fi 7878  df-sup 7909  df-inf 7910  df-oi 7978  df-card 8325  df-cda 8549  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-2 10619  df-3 10620  df-4 10621  df-5 10622  df-6 10623  df-7 10624  df-8 10625  df-9 10626  df-10 10627  df-n0 10821  df-z 10889  df-dec 11003  df-uz 11111  df-q 11216  df-rp 11254  df-xneg 11360  df-xadd 11361  df-xmul 11362  df-ioo 11590  df-icc 11593  df-fz 11736  df-fzo 11867  df-seq 12164  df-exp 12223  df-hash 12466  df-cj 13106  df-re 13107  df-im 13108  df-sqrt 13242  df-abs 13243  df-struct 15066  df-ndx 15067  df-slot 15068  df-base 15069  df-sets 15070  df-ress 15071  df-plusg 15146  df-mulr 15147  df-starv 15148  df-sca 15149  df-vsca 15150  df-ip 15151  df-tset 15152  df-ple 15153  df-ds 15155  df-unif 15156  df-hom 15157  df-cco 15158  df-rest 15264  df-topn 15265  df-0g 15283  df-gsum 15284  df-topgen 15285  df-pt 15286  df-prds 15289  df-xrs 15343  df-qtop 15349  df-imas 15350  df-xps 15353  df-mre 15435  df-mrc 15436  df-acs 15438  df-mgm 16431  df-sgrp 16470  df-mnd 16480  df-submnd 16526  df-mulg 16619  df-cntz 16914  df-cmn 17375  df-psmet 18905  df-xmet 18906  df-met 18907  df-bl 18908  df-mopn 18909  df-cnfld 18914  df-top 19863  df-bases 19864  df-topon 19865  df-topsp 19866  df-cn 20185  df-cnp 20186  df-tx 20519  df-hmeo 20712  df-xms 21277  df-ms 21278  df-tms 21279
This theorem is referenced by:  rrvmulc  29238
  Copyright terms: Public domain W3C validator