Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mhmhmeotmd Structured version   Visualization version   GIF version

Theorem mhmhmeotmd 29301
Description: Deduce a Topological Monoid using mapping that is both a homeomorphism and a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.)
Hypotheses
Ref Expression
mhmhmeotmd.m 𝐹 ∈ (𝑆 MndHom 𝑇)
mhmhmeotmd.h 𝐹 ∈ ((TopOpen‘𝑆)Homeo(TopOpen‘𝑇))
mhmhmeotmd.t 𝑆 ∈ TopMnd
mhmhmeotmd.s 𝑇 ∈ TopSp
Assertion
Ref Expression
mhmhmeotmd 𝑇 ∈ TopMnd

Proof of Theorem mhmhmeotmd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mhmhmeotmd.m . . 3 𝐹 ∈ (𝑆 MndHom 𝑇)
2 mhmrcl2 17162 . . 3 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
31, 2ax-mp 5 . 2 𝑇 ∈ Mnd
4 mhmhmeotmd.s . 2 𝑇 ∈ TopSp
5 mhmhmeotmd.h . . 3 𝐹 ∈ ((TopOpen‘𝑆)Homeo(TopOpen‘𝑇))
6 mhmrcl1 17161 . . . . 5 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
71, 6ax-mp 5 . . . 4 𝑆 ∈ Mnd
8 eqid 2610 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
9 eqid 2610 . . . . 5 (+𝑓𝑆) = (+𝑓𝑆)
108, 9mndplusf 17132 . . . 4 (𝑆 ∈ Mnd → (+𝑓𝑆):((Base‘𝑆) × (Base‘𝑆))⟶(Base‘𝑆))
117, 10ax-mp 5 . . 3 (+𝑓𝑆):((Base‘𝑆) × (Base‘𝑆))⟶(Base‘𝑆)
12 eqid 2610 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
13 eqid 2610 . . . . 5 (+𝑓𝑇) = (+𝑓𝑇)
1412, 13mndplusf 17132 . . . 4 (𝑇 ∈ Mnd → (+𝑓𝑇):((Base‘𝑇) × (Base‘𝑇))⟶(Base‘𝑇))
153, 14ax-mp 5 . . 3 (+𝑓𝑇):((Base‘𝑇) × (Base‘𝑇))⟶(Base‘𝑇)
16 mhmhmeotmd.t . . . 4 𝑆 ∈ TopMnd
17 eqid 2610 . . . . 5 (TopOpen‘𝑆) = (TopOpen‘𝑆)
1817, 8tmdtopon 21695 . . . 4 (𝑆 ∈ TopMnd → (TopOpen‘𝑆) ∈ (TopOn‘(Base‘𝑆)))
1916, 18ax-mp 5 . . 3 (TopOpen‘𝑆) ∈ (TopOn‘(Base‘𝑆))
20 eqid 2610 . . . . 5 (TopOpen‘𝑇) = (TopOpen‘𝑇)
2112, 20istps 20551 . . . 4 (𝑇 ∈ TopSp ↔ (TopOpen‘𝑇) ∈ (TopOn‘(Base‘𝑇)))
224, 21mpbi 219 . . 3 (TopOpen‘𝑇) ∈ (TopOn‘(Base‘𝑇))
23 eqid 2610 . . . . . 6 (+g𝑆) = (+g𝑆)
24 eqid 2610 . . . . . 6 (+g𝑇) = (+g𝑇)
258, 23, 24mhmlin 17165 . . . . 5 ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
261, 25mp3an1 1403 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+g𝑆)𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
278, 23, 9plusfval 17071 . . . . 5 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝑥(+𝑓𝑆)𝑦) = (𝑥(+g𝑆)𝑦))
2827fveq2d 6107 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+𝑓𝑆)𝑦)) = (𝐹‘(𝑥(+g𝑆)𝑦)))
298, 12mhmf 17163 . . . . . . 7 (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
301, 29ax-mp 5 . . . . . 6 𝐹:(Base‘𝑆)⟶(Base‘𝑇)
3130ffvelrni 6266 . . . . 5 (𝑥 ∈ (Base‘𝑆) → (𝐹𝑥) ∈ (Base‘𝑇))
3230ffvelrni 6266 . . . . 5 (𝑦 ∈ (Base‘𝑆) → (𝐹𝑦) ∈ (Base‘𝑇))
3312, 24, 13plusfval 17071 . . . . 5 (((𝐹𝑥) ∈ (Base‘𝑇) ∧ (𝐹𝑦) ∈ (Base‘𝑇)) → ((𝐹𝑥)(+𝑓𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3431, 32, 33syl2an 493 . . . 4 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → ((𝐹𝑥)(+𝑓𝑇)(𝐹𝑦)) = ((𝐹𝑥)(+g𝑇)(𝐹𝑦)))
3526, 28, 343eqtr4d 2654 . . 3 ((𝑥 ∈ (Base‘𝑆) ∧ 𝑦 ∈ (Base‘𝑆)) → (𝐹‘(𝑥(+𝑓𝑆)𝑦)) = ((𝐹𝑥)(+𝑓𝑇)(𝐹𝑦)))
3617, 9tmdcn 21697 . . . 4 (𝑆 ∈ TopMnd → (+𝑓𝑆) ∈ (((TopOpen‘𝑆) ×t (TopOpen‘𝑆)) Cn (TopOpen‘𝑆)))
3716, 36ax-mp 5 . . 3 (+𝑓𝑆) ∈ (((TopOpen‘𝑆) ×t (TopOpen‘𝑆)) Cn (TopOpen‘𝑆))
385, 11, 15, 19, 22, 35, 37mndpluscn 29300 . 2 (+𝑓𝑇) ∈ (((TopOpen‘𝑇) ×t (TopOpen‘𝑇)) Cn (TopOpen‘𝑇))
3913, 20istmd 21688 . 2 (𝑇 ∈ TopMnd ↔ (𝑇 ∈ Mnd ∧ 𝑇 ∈ TopSp ∧ (+𝑓𝑇) ∈ (((TopOpen‘𝑇) ×t (TopOpen‘𝑇)) Cn (TopOpen‘𝑇))))
403, 4, 38, 39mpbir3an 1237 1 𝑇 ∈ TopMnd
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wcel 1977   × cxp 5036  wf 5800  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  TopOpenctopn 15905  +𝑓cplusf 17062  Mndcmnd 17117   MndHom cmhm 17156  TopOnctopon 20518  TopSpctps 20519   Cn ccn 20838   ×t ctx 21173  Homeochmeo 21366  TopMndctmd 21684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-map 7746  df-topgen 15927  df-plusf 17064  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-tx 21175  df-hmeo 21368  df-tmd 21686
This theorem is referenced by:  xrge0tmd  29320
  Copyright terms: Public domain W3C validator