Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnvonmbllem2 Structured version   Visualization version   GIF version

Theorem opnvonmbllem2 39523
Description: An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
opnvonmbllem2.x (𝜑𝑋 ∈ Fin)
opnvonmbllem2.n 𝑆 = dom (voln‘𝑋)
opnvonmbllem2.g (𝜑𝐺 ∈ (TopOpen‘(ℝ^‘𝑋)))
opnvonmbl.k 𝐾 = { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
Assertion
Ref Expression
opnvonmbllem2 (𝜑𝐺𝑆)
Distinct variable groups:   ,𝐺,𝑖   ,𝐾,𝑖   𝑆,,𝑖   ,𝑋,𝑖   𝜑,,𝑖

Proof of Theorem opnvonmbllem2
Dummy variables 𝑐 𝑑 𝑒 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opnvonmbllem2.x . . . . . . . . . . 11 (𝜑𝑋 ∈ Fin)
2 eqid 2610 . . . . . . . . . . . 12 (dist‘(ℝ^‘𝑋)) = (dist‘(ℝ^‘𝑋))
32rrxmetfi 39183 . . . . . . . . . . 11 (𝑋 ∈ Fin → (dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑𝑚 𝑋)))
41, 3syl 17 . . . . . . . . . 10 (𝜑 → (dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑𝑚 𝑋)))
5 metxmet 21949 . . . . . . . . . 10 ((dist‘(ℝ^‘𝑋)) ∈ (Met‘(ℝ ↑𝑚 𝑋)) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
64, 5syl 17 . . . . . . . . 9 (𝜑 → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
76adantr 480 . . . . . . . 8 ((𝜑𝑥𝐺) → (dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)))
8 opnvonmbllem2.g . . . . . . . . . 10 (𝜑𝐺 ∈ (TopOpen‘(ℝ^‘𝑋)))
9 eqid 2610 . . . . . . . . . . . . . 14 (ℝ^‘𝑋) = (ℝ^‘𝑋)
109rrxval 22983 . . . . . . . . . . . . 13 (𝑋 ∈ Fin → (ℝ^‘𝑋) = (toℂHil‘(ℝfld freeLMod 𝑋)))
111, 10syl 17 . . . . . . . . . . . 12 (𝜑 → (ℝ^‘𝑋) = (toℂHil‘(ℝfld freeLMod 𝑋)))
1211fveq2d 6107 . . . . . . . . . . 11 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋))))
13 ovex 6577 . . . . . . . . . . . . 13 (ℝfld freeLMod 𝑋) ∈ V
14 eqid 2610 . . . . . . . . . . . . . 14 (toℂHil‘(ℝfld freeLMod 𝑋)) = (toℂHil‘(ℝfld freeLMod 𝑋))
15 eqid 2610 . . . . . . . . . . . . . 14 (dist‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (dist‘(toℂHil‘(ℝfld freeLMod 𝑋)))
16 eqid 2610 . . . . . . . . . . . . . 14 (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋)))
1714, 15, 16tchtopn 22833 . . . . . . . . . . . . 13 ((ℝfld freeLMod 𝑋) ∈ V → (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (MetOpen‘(dist‘(toℂHil‘(ℝfld freeLMod 𝑋)))))
1813, 17ax-mp 5 . . . . . . . . . . . 12 (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (MetOpen‘(dist‘(toℂHil‘(ℝfld freeLMod 𝑋))))
1918a1i 11 . . . . . . . . . . 11 (𝜑 → (TopOpen‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (MetOpen‘(dist‘(toℂHil‘(ℝfld freeLMod 𝑋)))))
2011eqcomd 2616 . . . . . . . . . . . . 13 (𝜑 → (toℂHil‘(ℝfld freeLMod 𝑋)) = (ℝ^‘𝑋))
2120fveq2d 6107 . . . . . . . . . . . 12 (𝜑 → (dist‘(toℂHil‘(ℝfld freeLMod 𝑋))) = (dist‘(ℝ^‘𝑋)))
2221fveq2d 6107 . . . . . . . . . . 11 (𝜑 → (MetOpen‘(dist‘(toℂHil‘(ℝfld freeLMod 𝑋)))) = (MetOpen‘(dist‘(ℝ^‘𝑋))))
2312, 19, 223eqtrd 2648 . . . . . . . . . 10 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) = (MetOpen‘(dist‘(ℝ^‘𝑋))))
248, 23eleqtrd 2690 . . . . . . . . 9 (𝜑𝐺 ∈ (MetOpen‘(dist‘(ℝ^‘𝑋))))
2524adantr 480 . . . . . . . 8 ((𝜑𝑥𝐺) → 𝐺 ∈ (MetOpen‘(dist‘(ℝ^‘𝑋))))
26 simpr 476 . . . . . . . 8 ((𝜑𝑥𝐺) → 𝑥𝐺)
27 eqid 2610 . . . . . . . . 9 (MetOpen‘(dist‘(ℝ^‘𝑋))) = (MetOpen‘(dist‘(ℝ^‘𝑋)))
2827mopni2 22108 . . . . . . . 8 (((dist‘(ℝ^‘𝑋)) ∈ (∞Met‘(ℝ ↑𝑚 𝑋)) ∧ 𝐺 ∈ (MetOpen‘(dist‘(ℝ^‘𝑋))) ∧ 𝑥𝐺) → ∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
297, 25, 26, 28syl3anc 1318 . . . . . . 7 ((𝜑𝑥𝐺) → ∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
301ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑋 ∈ Fin)
31 eqid 2610 . . . . . . . . . . . . . . . . . 18 (TopOpen‘(ℝ^‘𝑋)) = (TopOpen‘(ℝ^‘𝑋))
3231rrxtoponfi 39187 . . . . . . . . . . . . . . . . 17 (𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ ↑𝑚 𝑋)))
331, 32syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ ↑𝑚 𝑋)))
34 toponss 20544 . . . . . . . . . . . . . . . 16 (((TopOpen‘(ℝ^‘𝑋)) ∈ (TopOn‘(ℝ ↑𝑚 𝑋)) ∧ 𝐺 ∈ (TopOpen‘(ℝ^‘𝑋))) → 𝐺 ⊆ (ℝ ↑𝑚 𝑋))
3533, 8, 34syl2anc 691 . . . . . . . . . . . . . . 15 (𝜑𝐺 ⊆ (ℝ ↑𝑚 𝑋))
3635adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐺) → 𝐺 ⊆ (ℝ ↑𝑚 𝑋))
3736, 26sseldd 3569 . . . . . . . . . . . . 13 ((𝜑𝑥𝐺) → 𝑥 ∈ (ℝ ↑𝑚 𝑋))
3837adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑥 ∈ (ℝ ↑𝑚 𝑋))
39 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
4030, 38, 39hoiqssbl 39515 . . . . . . . . . . 11 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)))
41403adant3 1074 . . . . . . . . . 10 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)))
42 nfv 1830 . . . . . . . . . . . . . . . 16 𝑖(𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
43 nfv 1830 . . . . . . . . . . . . . . . 16 𝑖(𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋))
44 nfcv 2751 . . . . . . . . . . . . . . . . . 18 𝑖𝑥
45 nfixp1 7814 . . . . . . . . . . . . . . . . . 18 𝑖X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖))
4644, 45nfel 2763 . . . . . . . . . . . . . . . . 17 𝑖 𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖))
47 nfcv 2751 . . . . . . . . . . . . . . . . . 18 𝑖(𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)
4845, 47nfss 3561 . . . . . . . . . . . . . . . . 17 𝑖X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)
4946, 48nfan 1816 . . . . . . . . . . . . . . . 16 𝑖(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))
5042, 43, 49nf3an 1819 . . . . . . . . . . . . . . 15 𝑖((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)))
511adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → 𝑋 ∈ Fin)
52513ad2ant1 1075 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑋 ∈ Fin)
53 elmapi 7765 . . . . . . . . . . . . . . . . 17 (𝑐 ∈ (ℚ ↑𝑚 𝑋) → 𝑐:𝑋⟶ℚ)
5453adantr 480 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → 𝑐:𝑋⟶ℚ)
55543ad2ant2 1076 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑐:𝑋⟶ℚ)
56 elmapi 7765 . . . . . . . . . . . . . . . . 17 (𝑑 ∈ (ℚ ↑𝑚 𝑋) → 𝑑:𝑋⟶ℚ)
5756adantl 481 . . . . . . . . . . . . . . . 16 ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → 𝑑:𝑋⟶ℚ)
58573ad2ant2 1076 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑑:𝑋⟶ℚ)
59 simp3r 1083 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))
60 simp1r 1079 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺)
61 simp3l 1082 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → 𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)))
62 opnvonmbl.k . . . . . . . . . . . . . . 15 𝐾 = { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺}
63 eqid 2610 . . . . . . . . . . . . . . 15 (𝑖𝑋 ↦ ⟨(𝑐𝑖), (𝑑𝑖)⟩) = (𝑖𝑋 ↦ ⟨(𝑐𝑖), (𝑑𝑖)⟩)
6450, 52, 55, 58, 59, 60, 61, 62, 63opnvonmbllem1 39522 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) ∧ (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒))) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
65643exp 1256 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → ((𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
6665adantlr 747 . . . . . . . . . . . 12 (((𝜑𝑥𝐺) ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → ((𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
67663adant2 1073 . . . . . . . . . . 11 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ((𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → ((𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
6867rexlimdvv 3019 . . . . . . . . . 10 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑥X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒)) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖)))
6941, 68mpd 15 . . . . . . . . 9 (((𝜑𝑥𝐺) ∧ 𝑒 ∈ ℝ+ ∧ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
70693exp 1256 . . . . . . . 8 ((𝜑𝑥𝐺) → (𝑒 ∈ ℝ+ → ((𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺 → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))))
7170rexlimdv 3012 . . . . . . 7 ((𝜑𝑥𝐺) → (∃𝑒 ∈ ℝ+ (𝑥(ball‘(dist‘(ℝ^‘𝑋)))𝑒) ⊆ 𝐺 → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖)))
7229, 71mpd 15 . . . . . 6 ((𝜑𝑥𝐺) → ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
73 eliun 4460 . . . . . 6 (𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ↔ ∃𝐾 𝑥X𝑖𝑋 (([,) ∘ )‘𝑖))
7472, 73sylibr 223 . . . . 5 ((𝜑𝑥𝐺) → 𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
7574ralrimiva 2949 . . . 4 (𝜑 → ∀𝑥𝐺 𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
76 dfss3 3558 . . . 4 (𝐺 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ↔ ∀𝑥𝐺 𝑥 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
7775, 76sylibr 223 . . 3 (𝜑𝐺 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
7862eleq2i 2680 . . . . . . . . 9 (𝐾 ∈ { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺})
7978biimpi 205 . . . . . . . 8 (𝐾 ∈ { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺})
8079adantl 481 . . . . . . 7 ((𝜑𝐾) → ∈ { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺})
81 rabid 3095 . . . . . . 7 ( ∈ { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺} ↔ ( ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∧ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺))
8280, 81sylib 207 . . . . . 6 ((𝜑𝐾) → ( ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∧ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺))
8382simprd 478 . . . . 5 ((𝜑𝐾) → X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
8483ralrimiva 2949 . . . 4 (𝜑 → ∀𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
85 iunss 4497 . . . 4 ( 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺 ↔ ∀𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
8684, 85sylibr 223 . . 3 (𝜑 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺)
8777, 86eqssd 3585 . 2 (𝜑𝐺 = 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖))
88 opnvonmbllem2.n . . . 4 𝑆 = dom (voln‘𝑋)
891, 88dmovnsal 39502 . . 3 (𝜑𝑆 ∈ SAlg)
90 ssrab2 3650 . . . . . 6 { ∈ ((ℚ × ℚ) ↑𝑚 𝑋) ∣ X𝑖𝑋 (([,) ∘ )‘𝑖) ⊆ 𝐺} ⊆ ((ℚ × ℚ) ↑𝑚 𝑋)
9162, 90eqsstri 3598 . . . . 5 𝐾 ⊆ ((ℚ × ℚ) ↑𝑚 𝑋)
9291a1i 11 . . . 4 (𝜑𝐾 ⊆ ((ℚ × ℚ) ↑𝑚 𝑋))
93 qct 38519 . . . . . . 7 ℚ ≼ ω
9493a1i 11 . . . . . 6 (𝜑 → ℚ ≼ ω)
95 xpct 8722 . . . . . 6 ((ℚ ≼ ω ∧ ℚ ≼ ω) → (ℚ × ℚ) ≼ ω)
9694, 94, 95syl2anc 691 . . . . 5 (𝜑 → (ℚ × ℚ) ≼ ω)
9796, 1mpct 38388 . . . 4 (𝜑 → ((ℚ × ℚ) ↑𝑚 𝑋) ≼ ω)
98 ssct 7926 . . . 4 ((𝐾 ⊆ ((ℚ × ℚ) ↑𝑚 𝑋) ∧ ((ℚ × ℚ) ↑𝑚 𝑋) ≼ ω) → 𝐾 ≼ ω)
9992, 97, 98syl2anc 691 . . 3 (𝜑𝐾 ≼ ω)
100 reex 9906 . . . . . . . . . 10 ℝ ∈ V
101100, 100xpex 6860 . . . . . . . . 9 (ℝ × ℝ) ∈ V
102 qssre 11674 . . . . . . . . . 10 ℚ ⊆ ℝ
103 xpss12 5148 . . . . . . . . . 10 ((ℚ ⊆ ℝ ∧ ℚ ⊆ ℝ) → (ℚ × ℚ) ⊆ (ℝ × ℝ))
104102, 102, 103mp2an 704 . . . . . . . . 9 (ℚ × ℚ) ⊆ (ℝ × ℝ)
105 mapss 7786 . . . . . . . . 9 (((ℝ × ℝ) ∈ V ∧ (ℚ × ℚ) ⊆ (ℝ × ℝ)) → ((ℚ × ℚ) ↑𝑚 𝑋) ⊆ ((ℝ × ℝ) ↑𝑚 𝑋))
106101, 104, 105mp2an 704 . . . . . . . 8 ((ℚ × ℚ) ↑𝑚 𝑋) ⊆ ((ℝ × ℝ) ↑𝑚 𝑋)
10791sseli 3564 . . . . . . . 8 (𝐾 ∈ ((ℚ × ℚ) ↑𝑚 𝑋))
108106, 107sseldi 3566 . . . . . . 7 (𝐾 ∈ ((ℝ × ℝ) ↑𝑚 𝑋))
109 elmapi 7765 . . . . . . 7 ( ∈ ((ℝ × ℝ) ↑𝑚 𝑋) → :𝑋⟶(ℝ × ℝ))
110108, 109syl 17 . . . . . 6 (𝐾:𝑋⟶(ℝ × ℝ))
111110adantl 481 . . . . 5 ((𝜑𝐾) → :𝑋⟶(ℝ × ℝ))
112 fveq2 6103 . . . . . . 7 (𝑘 = 𝑖 → (𝑘) = (𝑖))
113112fveq2d 6107 . . . . . 6 (𝑘 = 𝑖 → (1st ‘(𝑘)) = (1st ‘(𝑖)))
114113cbvmptv 4678 . . . . 5 (𝑘𝑋 ↦ (1st ‘(𝑘))) = (𝑖𝑋 ↦ (1st ‘(𝑖)))
115112fveq2d 6107 . . . . . 6 (𝑘 = 𝑖 → (2nd ‘(𝑘)) = (2nd ‘(𝑖)))
116115cbvmptv 4678 . . . . 5 (𝑘𝑋 ↦ (2nd ‘(𝑘))) = (𝑖𝑋 ↦ (2nd ‘(𝑖)))
117111, 114, 116hoicoto2 39495 . . . 4 ((𝜑𝐾) → X𝑖𝑋 (([,) ∘ )‘𝑖) = X𝑖𝑋 (((𝑘𝑋 ↦ (1st ‘(𝑘)))‘𝑖)[,)((𝑘𝑋 ↦ (2nd ‘(𝑘)))‘𝑖)))
1181adantr 480 . . . . 5 ((𝜑𝐾) → 𝑋 ∈ Fin)
119111ffvelrnda 6267 . . . . . . 7 (((𝜑𝐾) ∧ 𝑘𝑋) → (𝑘) ∈ (ℝ × ℝ))
120 xp1st 7089 . . . . . . 7 ((𝑘) ∈ (ℝ × ℝ) → (1st ‘(𝑘)) ∈ ℝ)
121119, 120syl 17 . . . . . 6 (((𝜑𝐾) ∧ 𝑘𝑋) → (1st ‘(𝑘)) ∈ ℝ)
122 eqid 2610 . . . . . 6 (𝑘𝑋 ↦ (1st ‘(𝑘))) = (𝑘𝑋 ↦ (1st ‘(𝑘)))
123121, 122fmptd 6292 . . . . 5 ((𝜑𝐾) → (𝑘𝑋 ↦ (1st ‘(𝑘))):𝑋⟶ℝ)
124 xp2nd 7090 . . . . . . 7 ((𝑘) ∈ (ℝ × ℝ) → (2nd ‘(𝑘)) ∈ ℝ)
125119, 124syl 17 . . . . . 6 (((𝜑𝐾) ∧ 𝑘𝑋) → (2nd ‘(𝑘)) ∈ ℝ)
126 eqid 2610 . . . . . 6 (𝑘𝑋 ↦ (2nd ‘(𝑘))) = (𝑘𝑋 ↦ (2nd ‘(𝑘)))
127125, 126fmptd 6292 . . . . 5 ((𝜑𝐾) → (𝑘𝑋 ↦ (2nd ‘(𝑘))):𝑋⟶ℝ)
128118, 88, 123, 127hoimbl 39521 . . . 4 ((𝜑𝐾) → X𝑖𝑋 (((𝑘𝑋 ↦ (1st ‘(𝑘)))‘𝑖)[,)((𝑘𝑋 ↦ (2nd ‘(𝑘)))‘𝑖)) ∈ 𝑆)
129117, 128eqeltrd 2688 . . 3 ((𝜑𝐾) → X𝑖𝑋 (([,) ∘ )‘𝑖) ∈ 𝑆)
13089, 99, 129saliuncl 39218 . 2 (𝜑 𝐾 X𝑖𝑋 (([,) ∘ )‘𝑖) ∈ 𝑆)
13187, 130eqeltrd 2688 1 (𝜑𝐺𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  {crab 2900  Vcvv 3173  wss 3540  cop 4131   ciun 4455   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  ωcom 6957  1st c1st 7057  2nd c2nd 7058  𝑚 cmap 7744  Xcixp 7794  cdom 7839  Fincfn 7841  cr 9814  cq 11664  +crp 11708  [,)cico 12048  distcds 15777  TopOpenctopn 15905  ∞Metcxmt 19552  Metcme 19553  ballcbl 19554  MetOpencmopn 19557  fldcrefld 19769   freeLMod cfrlm 19909  TopOnctopon 20518  toℂHilctch 22775  ℝ^crrx 22979  volncvoln 39428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cc 9140  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-omul 7452  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-acn 8651  df-ac 8822  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-rlim 14068  df-sum 14265  df-prod 14475  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-field 18573  df-subrg 18601  df-abv 18640  df-staf 18668  df-srng 18669  df-lmod 18688  df-lss 18754  df-lmhm 18843  df-lvec 18924  df-sra 18993  df-rgmod 18994  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-refld 19770  df-phl 19790  df-dsmm 19895  df-frlm 19910  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cmp 21000  df-xms 21935  df-ms 21936  df-nm 22197  df-ngp 22198  df-tng 22199  df-nrg 22200  df-nlm 22201  df-clm 22671  df-cph 22776  df-tch 22777  df-rrx 22981  df-ovol 23040  df-vol 23041  df-salg 39205  df-sumge0 39256  df-mea 39343  df-ome 39380  df-caragen 39382  df-ovoln 39427  df-voln 39429
This theorem is referenced by:  opnvonmbl  39524
  Copyright terms: Public domain W3C validator