Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mthmpps Structured version   Visualization version   GIF version

Theorem mthmpps 30733
Description: Given a theorem, there is an explicitly definable witnessing provable pre-statement for the provability of the theorem. (However, this pre-statement requires infinitely many dv conditions, which is sometimes inconvenient.) (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mthmpps.r 𝑅 = (mStRed‘𝑇)
mthmpps.j 𝐽 = (mPPSt‘𝑇)
mthmpps.u 𝑈 = (mThm‘𝑇)
mthmpps.d 𝐷 = (mDV‘𝑇)
mthmpps.v 𝑉 = (mVars‘𝑇)
mthmpps.z 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
mthmpps.m 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍)))
Assertion
Ref Expression
mthmpps (𝑇 ∈ mFS → (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 ↔ (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))))

Proof of Theorem mthmpps
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 mthmpps.m . . . . . . . 8 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍)))
2 mthmpps.u . . . . . . . . . . . . . 14 𝑈 = (mThm‘𝑇)
3 eqid 2610 . . . . . . . . . . . . . 14 (mPreSt‘𝑇) = (mPreSt‘𝑇)
42, 3mthmsta 30729 . . . . . . . . . . . . 13 𝑈 ⊆ (mPreSt‘𝑇)
5 simpr 476 . . . . . . . . . . . . 13 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈)
64, 5sseldi 3566 . . . . . . . . . . . 12 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝐶, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇))
7 mthmpps.d . . . . . . . . . . . . 13 𝐷 = (mDV‘𝑇)
8 eqid 2610 . . . . . . . . . . . . 13 (mEx‘𝑇) = (mEx‘𝑇)
97, 8, 3elmpst 30687 . . . . . . . . . . . 12 (⟨𝐶, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ↔ ((𝐶𝐷𝐶 = 𝐶) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
106, 9sylib 207 . . . . . . . . . . 11 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ((𝐶𝐷𝐶 = 𝐶) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
1110simp1d 1066 . . . . . . . . . 10 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐶𝐷𝐶 = 𝐶))
1211simpld 474 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐶𝐷)
13 difssd 3700 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐷 ∖ (𝑍 × 𝑍)) ⊆ 𝐷)
1412, 13unssd 3751 . . . . . . . 8 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ⊆ 𝐷)
151, 14syl5eqss 3612 . . . . . . 7 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝑀𝐷)
1611simprd 478 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐶 = 𝐶)
17 cnvdif 5458 . . . . . . . . . . 11 (𝐷 ∖ (𝑍 × 𝑍)) = (𝐷(𝑍 × 𝑍))
18 cnvdif 5458 . . . . . . . . . . . . . 14 (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
19 cnvxp 5470 . . . . . . . . . . . . . . 15 ((mVR‘𝑇) × (mVR‘𝑇)) = ((mVR‘𝑇) × (mVR‘𝑇))
20 cnvi 5456 . . . . . . . . . . . . . . 15 I = I
2119, 20difeq12i 3688 . . . . . . . . . . . . . 14 (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
2218, 21eqtri 2632 . . . . . . . . . . . . 13 (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I ) = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
23 eqid 2610 . . . . . . . . . . . . . . 15 (mVR‘𝑇) = (mVR‘𝑇)
2423, 7mdvval 30655 . . . . . . . . . . . . . 14 𝐷 = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
2524cnveqi 5219 . . . . . . . . . . . . 13 𝐷 = (((mVR‘𝑇) × (mVR‘𝑇)) ∖ I )
2622, 25, 243eqtr4i 2642 . . . . . . . . . . . 12 𝐷 = 𝐷
27 cnvxp 5470 . . . . . . . . . . . 12 (𝑍 × 𝑍) = (𝑍 × 𝑍)
2826, 27difeq12i 3688 . . . . . . . . . . 11 (𝐷(𝑍 × 𝑍)) = (𝐷 ∖ (𝑍 × 𝑍))
2917, 28eqtri 2632 . . . . . . . . . 10 (𝐷 ∖ (𝑍 × 𝑍)) = (𝐷 ∖ (𝑍 × 𝑍))
3029a1i 11 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐷 ∖ (𝑍 × 𝑍)) = (𝐷 ∖ (𝑍 × 𝑍)))
3116, 30uneq12d 3730 . . . . . . . 8 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐶(𝐷 ∖ (𝑍 × 𝑍))) = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))))
321cnveqi 5219 . . . . . . . . 9 𝑀 = (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍)))
33 cnvun 5457 . . . . . . . . 9 (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) = (𝐶(𝐷 ∖ (𝑍 × 𝑍)))
3432, 33eqtri 2632 . . . . . . . 8 𝑀 = (𝐶(𝐷 ∖ (𝑍 × 𝑍)))
3531, 34, 13eqtr4g 2669 . . . . . . 7 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝑀 = 𝑀)
3615, 35jca 553 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑀𝐷𝑀 = 𝑀))
3710simp2d 1067 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin))
3810simp3d 1068 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐴 ∈ (mEx‘𝑇))
397, 8, 3elmpst 30687 . . . . . 6 (⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ↔ ((𝑀𝐷𝑀 = 𝑀) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
4036, 37, 38, 39syl3anbrc 1239 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇))
41 mthmpps.r . . . . . . . 8 𝑅 = (mStRed‘𝑇)
42 mthmpps.j . . . . . . . 8 𝐽 = (mPPSt‘𝑇)
4341, 42, 2elmthm 30727 . . . . . . 7 (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 ↔ ∃𝑥𝐽 (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
445, 43sylib 207 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ∃𝑥𝐽 (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
45 eqid 2610 . . . . . . . 8 (mCls‘𝑇) = (mCls‘𝑇)
46 simpll 786 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑇 ∈ mFS)
4715adantr 480 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑀𝐷)
4837simpld 474 . . . . . . . . 9 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐻 ⊆ (mEx‘𝑇))
4948adantr 480 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐻 ⊆ (mEx‘𝑇))
503, 42mppspst 30725 . . . . . . . . . . . . . . . . . . 19 𝐽 ⊆ (mPreSt‘𝑇)
51 simprl 790 . . . . . . . . . . . . . . . . . . 19 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥𝐽)
5250, 51sseldi 3566 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥 ∈ (mPreSt‘𝑇))
533mpst123 30691 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (mPreSt‘𝑇) → 𝑥 = ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
5452, 53syl 17 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥 = ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
5554fveq2d 6107 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅𝑥) = (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩))
56 simprr 792 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
5755, 56eqtr3d 2646 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
5854, 52eqeltrrd 2689 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ ∈ (mPreSt‘𝑇))
59 mthmpps.v . . . . . . . . . . . . . . . . 17 𝑉 = (mVars‘𝑇)
60 eqid 2610 . . . . . . . . . . . . . . . . 17 (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)}))
6159, 3, 41, 60msrval 30689 . . . . . . . . . . . . . . . 16 (⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩) = ⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
6258, 61syl 17 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅‘⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩) = ⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩)
63 mthmpps.z . . . . . . . . . . . . . . . . . 18 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
6459, 3, 41, 63msrval 30689 . . . . . . . . . . . . . . . . 17 (⟨𝐶, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨𝐶, 𝐻, 𝐴⟩) = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
656, 64syl 17 . . . . . . . . . . . . . . . 16 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑅‘⟨𝐶, 𝐻, 𝐴⟩) = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
6665adantr 480 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑅‘⟨𝐶, 𝐻, 𝐴⟩) = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
6757, 62, 663eqtr3d 2652 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
68 fvex 6113 . . . . . . . . . . . . . . . 16 (1st ‘(1st𝑥)) ∈ V
6968inex1 4727 . . . . . . . . . . . . . . 15 ((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) ∈ V
70 fvex 6113 . . . . . . . . . . . . . . 15 (2nd ‘(1st𝑥)) ∈ V
71 fvex 6113 . . . . . . . . . . . . . . 15 (2nd𝑥) ∈ V
7269, 70, 71otth 4879 . . . . . . . . . . . . . 14 (⟨((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ ↔ (((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = (𝐶 ∩ (𝑍 × 𝑍)) ∧ (2nd ‘(1st𝑥)) = 𝐻 ∧ (2nd𝑥) = 𝐴))
7367, 72sylib 207 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = (𝐶 ∩ (𝑍 × 𝑍)) ∧ (2nd ‘(1st𝑥)) = 𝐻 ∧ (2nd𝑥) = 𝐴))
7473simp1d 1066 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = (𝐶 ∩ (𝑍 × 𝑍)))
7573simp2d 1067 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (2nd ‘(1st𝑥)) = 𝐻)
7673simp3d 1068 . . . . . . . . . . . . . . . . . . 19 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (2nd𝑥) = 𝐴)
7776sneqd 4137 . . . . . . . . . . . . . . . . . 18 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → {(2nd𝑥)} = {𝐴})
7875, 77uneq12d 3730 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)}) = (𝐻 ∪ {𝐴}))
7978imaeq2d 5385 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = (𝑉 “ (𝐻 ∪ {𝐴})))
8079unieqd 4382 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = (𝑉 “ (𝐻 ∪ {𝐴})))
8180, 63syl6eqr 2662 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) = 𝑍)
8281sqxpeqd 5065 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)}))) = (𝑍 × 𝑍))
8382ineq2d 3776 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∩ ( (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})) × (𝑉 “ ((2nd ‘(1st𝑥)) ∪ {(2nd𝑥)})))) = ((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)))
8474, 83eqtr3d 2646 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (𝐶 ∩ (𝑍 × 𝑍)) = ((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)))
85 inss1 3795 . . . . . . . . . . 11 (𝐶 ∩ (𝑍 × 𝑍)) ⊆ 𝐶
8684, 85syl6eqssr 3619 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ⊆ 𝐶)
87 eqidd 2611 . . . . . . . . . . . . . . 15 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (1st ‘(1st𝑥)) = (1st ‘(1st𝑥)))
8887, 75, 76oteq123d 4355 . . . . . . . . . . . . . 14 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), (2nd ‘(1st𝑥)), (2nd𝑥)⟩ = ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩)
8954, 88eqtrd 2644 . . . . . . . . . . . . 13 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝑥 = ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩)
9089, 52eqeltrrd 2689 . . . . . . . . . . . 12 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇))
917, 8, 3elmpst 30687 . . . . . . . . . . . . . 14 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ↔ (((1st ‘(1st𝑥)) ⊆ 𝐷(1st ‘(1st𝑥)) = (1st ‘(1st𝑥))) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
9291simp1bi 1069 . . . . . . . . . . . . 13 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → ((1st ‘(1st𝑥)) ⊆ 𝐷(1st ‘(1st𝑥)) = (1st ‘(1st𝑥))))
9392simpld 474 . . . . . . . . . . . 12 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → (1st ‘(1st𝑥)) ⊆ 𝐷)
9490, 93syl 17 . . . . . . . . . . 11 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (1st ‘(1st𝑥)) ⊆ 𝐷)
9594ssdifd 3708 . . . . . . . . . 10 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍)) ⊆ (𝐷 ∖ (𝑍 × 𝑍)))
96 unss12 3747 . . . . . . . . . 10 ((((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ⊆ 𝐶 ∧ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍)) ⊆ (𝐷 ∖ (𝑍 × 𝑍))) → (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍))) ⊆ (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))))
9786, 95, 96syl2anc 691 . . . . . . . . 9 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍))) ⊆ (𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))))
98 inundif 3998 . . . . . . . . . 10 (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍))) = (1st ‘(1st𝑥))
9998eqcomi 2619 . . . . . . . . 9 (1st ‘(1st𝑥)) = (((1st ‘(1st𝑥)) ∩ (𝑍 × 𝑍)) ∪ ((1st ‘(1st𝑥)) ∖ (𝑍 × 𝑍)))
10097, 99, 13sstr4g 3609 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → (1st ‘(1st𝑥)) ⊆ 𝑀)
101 ssid 3587 . . . . . . . . 9 𝐻𝐻
102101a1i 11 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐻𝐻)
1037, 8, 45, 46, 47, 49, 100, 102ss2mcls 30719 . . . . . . 7 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻) ⊆ (𝑀(mCls‘𝑇)𝐻))
10489, 51eqeltrrd 2689 . . . . . . . 8 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → ⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ 𝐽)
1053, 42, 45elmpps 30724 . . . . . . . . 9 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ∧ 𝐴 ∈ ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻)))
106105simprbi 479 . . . . . . . 8 (⟨(1st ‘(1st𝑥)), 𝐻, 𝐴⟩ ∈ 𝐽𝐴 ∈ ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻))
107104, 106syl 17 . . . . . . 7 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐴 ∈ ((1st ‘(1st𝑥))(mCls‘𝑇)𝐻))
108103, 107sseldd 3569 . . . . . 6 (((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) ∧ (𝑥𝐽 ∧ (𝑅𝑥) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))) → 𝐴 ∈ (𝑀(mCls‘𝑇)𝐻))
10944, 108rexlimddv 3017 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → 𝐴 ∈ (𝑀(mCls‘𝑇)𝐻))
1103, 42, 45elmpps 30724 . . . . 5 (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ↔ (⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) ∧ 𝐴 ∈ (𝑀(mCls‘𝑇)𝐻)))
11140, 109, 110sylanbrc 695 . . . 4 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽)
1121ineq1i 3772 . . . . . . . 8 (𝑀 ∩ (𝑍 × 𝑍)) = ((𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ∩ (𝑍 × 𝑍))
113 indir 3834 . . . . . . . 8 ((𝐶 ∪ (𝐷 ∖ (𝑍 × 𝑍))) ∩ (𝑍 × 𝑍)) = ((𝐶 ∩ (𝑍 × 𝑍)) ∪ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)))
114 incom 3767 . . . . . . . . . . 11 ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) = ((𝑍 × 𝑍) ∩ (𝐷 ∖ (𝑍 × 𝑍)))
115 disjdif 3992 . . . . . . . . . . 11 ((𝑍 × 𝑍) ∩ (𝐷 ∖ (𝑍 × 𝑍))) = ∅
116114, 115eqtri 2632 . . . . . . . . . 10 ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) = ∅
117 0ss 3924 . . . . . . . . . 10 ∅ ⊆ (𝐶 ∩ (𝑍 × 𝑍))
118116, 117eqsstri 3598 . . . . . . . . 9 ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) ⊆ (𝐶 ∩ (𝑍 × 𝑍))
119 ssequn2 3748 . . . . . . . . 9 (((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍)) ⊆ (𝐶 ∩ (𝑍 × 𝑍)) ↔ ((𝐶 ∩ (𝑍 × 𝑍)) ∪ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍))) = (𝐶 ∩ (𝑍 × 𝑍)))
120118, 119mpbi 219 . . . . . . . 8 ((𝐶 ∩ (𝑍 × 𝑍)) ∪ ((𝐷 ∖ (𝑍 × 𝑍)) ∩ (𝑍 × 𝑍))) = (𝐶 ∩ (𝑍 × 𝑍))
121112, 113, 1203eqtri 2636 . . . . . . 7 (𝑀 ∩ (𝑍 × 𝑍)) = (𝐶 ∩ (𝑍 × 𝑍))
122121a1i 11 . . . . . 6 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑀 ∩ (𝑍 × 𝑍)) = (𝐶 ∩ (𝑍 × 𝑍)))
123122oteq1d 4352 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → ⟨(𝑀 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ = ⟨(𝐶 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
12459, 3, 41, 63msrval 30689 . . . . . 6 (⟨𝑀, 𝐻, 𝐴⟩ ∈ (mPreSt‘𝑇) → (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = ⟨(𝑀 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
12540, 124syl 17 . . . . 5 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = ⟨(𝑀 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
126123, 125, 653eqtr4d 2654 . . . 4 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))
127111, 126jca 553 . . 3 ((𝑇 ∈ mFS ∧ ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈) → (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩)))
128127ex 449 . 2 (𝑇 ∈ mFS → (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 → (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))))
12941, 42, 2mthmi 30728 . 2 ((⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩)) → ⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈)
130128, 129impbid1 214 1 (𝑇 ∈ mFS → (⟨𝐶, 𝐻, 𝐴⟩ ∈ 𝑈 ↔ (⟨𝑀, 𝐻, 𝐴⟩ ∈ 𝐽 ∧ (𝑅‘⟨𝑀, 𝐻, 𝐴⟩) = (𝑅‘⟨𝐶, 𝐻, 𝐴⟩))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wrex 2897  cdif 3537  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125  cotp 4133   cuni 4372   I cid 4948   × cxp 5036  ccnv 5037  cima 5041  cfv 5804  (class class class)co 6549  1st c1st 7057  2nd c2nd 7058  Fincfn 7841  mVRcmvar 30612  mExcmex 30618  mDVcmdv 30619  mVarscmvrs 30620  mPreStcmpst 30624  mStRedcmsr 30625  mFScmfs 30627  mClscmcls 30628  mPPStcmpps 30629  mThmcmthm 30630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-frmd 17209  df-mrex 30637  df-mex 30638  df-mdv 30639  df-mrsub 30641  df-msub 30642  df-mvh 30643  df-mpst 30644  df-msr 30645  df-msta 30646  df-mfs 30647  df-mcls 30648  df-mpps 30649  df-mthm 30650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator