Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  difeq12i Structured version   Visualization version   GIF version

Theorem difeq12i 3688
 Description: Equality inference for class difference. (Contributed by NM, 29-Aug-2004.)
Hypotheses
Ref Expression
difeq1i.1 𝐴 = 𝐵
difeq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
difeq12i (𝐴𝐶) = (𝐵𝐷)

Proof of Theorem difeq12i
StepHypRef Expression
1 difeq1i.1 . . 3 𝐴 = 𝐵
21difeq1i 3686 . 2 (𝐴𝐶) = (𝐵𝐶)
3 difeq12i.2 . . 3 𝐶 = 𝐷
43difeq2i 3687 . 2 (𝐵𝐶) = (𝐵𝐷)
52, 4eqtri 2632 1 (𝐴𝐶) = (𝐵𝐷)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475   ∖ cdif 3537 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rab 2905  df-dif 3543 This theorem is referenced by:  difrab  3860  preddif  5622  uniioombllem4  23160  gtiso  28861  mthmpps  30733  zrdivrng  32922  isdrngo1  32925  pwfi2f1o  36684  salexct2  39233
 Copyright terms: Public domain W3C validator