Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  msrval Structured version   Visualization version   GIF version

Theorem msrval 30689
Description: Value of the reduct of a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
msrfval.v 𝑉 = (mVars‘𝑇)
msrfval.p 𝑃 = (mPreSt‘𝑇)
msrfval.r 𝑅 = (mStRed‘𝑇)
msrval.z 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
Assertion
Ref Expression
msrval (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝑅‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)

Proof of Theorem msrval
Dummy variables 𝑎 𝑠 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 msrfval.v . . . 4 𝑉 = (mVars‘𝑇)
2 msrfval.p . . . 4 𝑃 = (mPreSt‘𝑇)
3 msrfval.r . . . 4 𝑅 = (mStRed‘𝑇)
41, 2, 3msrfval 30688 . . 3 𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩)
54a1i 11 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑅 = (𝑠𝑃(2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩))
6 fvex 6113 . . . 4 (2nd ‘(1st𝑠)) ∈ V
76a1i 11 . . 3 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) → (2nd ‘(1st𝑠)) ∈ V)
8 fvex 6113 . . . . 5 (2nd𝑠) ∈ V
98a1i 11 . . . 4 (((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) → (2nd𝑠) ∈ V)
10 simpllr 795 . . . . . . . . 9 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝑠 = ⟨𝐷, 𝐻, 𝐴⟩)
1110fveq2d 6107 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st𝑠) = (1st ‘⟨𝐷, 𝐻, 𝐴⟩))
1211fveq2d 6107 . . . . . . 7 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st ‘(1st𝑠)) = (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)))
13 eqid 2610 . . . . . . . . . . . . 13 (mDV‘𝑇) = (mDV‘𝑇)
14 eqid 2610 . . . . . . . . . . . . 13 (mEx‘𝑇) = (mEx‘𝑇)
1513, 14, 2elmpst 30687 . . . . . . . . . . . 12 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 ↔ ((𝐷 ⊆ (mDV‘𝑇) ∧ 𝐷 = 𝐷) ∧ (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin) ∧ 𝐴 ∈ (mEx‘𝑇)))
1615simp1bi 1069 . . . . . . . . . . 11 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐷 ⊆ (mDV‘𝑇) ∧ 𝐷 = 𝐷))
1716simpld 474 . . . . . . . . . 10 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐷 ⊆ (mDV‘𝑇))
1817ad3antrrr 762 . . . . . . . . 9 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐷 ⊆ (mDV‘𝑇))
19 fvex 6113 . . . . . . . . . 10 (mDV‘𝑇) ∈ V
2019ssex 4730 . . . . . . . . 9 (𝐷 ⊆ (mDV‘𝑇) → 𝐷 ∈ V)
2118, 20syl 17 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐷 ∈ V)
2215simp2bi 1070 . . . . . . . . . 10 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝐻 ⊆ (mEx‘𝑇) ∧ 𝐻 ∈ Fin))
2322simprd 478 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐻 ∈ Fin)
2423ad3antrrr 762 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐻 ∈ Fin)
2515simp3bi 1071 . . . . . . . . 9 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝐴 ∈ (mEx‘𝑇))
2625ad3antrrr 762 . . . . . . . 8 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝐴 ∈ (mEx‘𝑇))
27 ot1stg 7073 . . . . . . . 8 ((𝐷 ∈ V ∧ 𝐻 ∈ Fin ∧ 𝐴 ∈ (mEx‘𝑇)) → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2821, 24, 26, 27syl3anc 1318 . . . . . . 7 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐷)
2912, 28eqtrd 2644 . . . . . 6 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (1st ‘(1st𝑠)) = 𝐷)
30 fvex 6113 . . . . . . . . . . 11 (mVars‘𝑇) ∈ V
311, 30eqeltri 2684 . . . . . . . . . 10 𝑉 ∈ V
32 imaexg 6995 . . . . . . . . . 10 (𝑉 ∈ V → (𝑉 “ ( ∪ {𝑎})) ∈ V)
3331, 32ax-mp 5 . . . . . . . . 9 (𝑉 “ ( ∪ {𝑎})) ∈ V
3433uniex 6851 . . . . . . . 8 (𝑉 “ ( ∪ {𝑎})) ∈ V
3534a1i 11 . . . . . . 7 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) ∈ V)
36 id 22 . . . . . . . . 9 (𝑧 = (𝑉 “ ( ∪ {𝑎})) → 𝑧 = (𝑉 “ ( ∪ {𝑎})))
37 simplr 788 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → = (2nd ‘(1st𝑠)))
3811fveq2d 6107 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd ‘(1st𝑠)) = (2nd ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)))
39 ot2ndg 7074 . . . . . . . . . . . . . . 15 ((𝐷 ∈ V ∧ 𝐻 ∈ Fin ∧ 𝐴 ∈ (mEx‘𝑇)) → (2nd ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐻)
4021, 24, 26, 39syl3anc 1318 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd ‘(1st ‘⟨𝐷, 𝐻, 𝐴⟩)) = 𝐻)
4137, 38, 403eqtrd 2648 . . . . . . . . . . . . 13 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → = 𝐻)
42 simpr 476 . . . . . . . . . . . . . . 15 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝑎 = (2nd𝑠))
4310fveq2d 6107 . . . . . . . . . . . . . . 15 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd𝑠) = (2nd ‘⟨𝐷, 𝐻, 𝐴⟩))
44 ot3rdg 7075 . . . . . . . . . . . . . . . 16 (𝐴 ∈ (mEx‘𝑇) → (2nd ‘⟨𝐷, 𝐻, 𝐴⟩) = 𝐴)
4526, 44syl 17 . . . . . . . . . . . . . . 15 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (2nd ‘⟨𝐷, 𝐻, 𝐴⟩) = 𝐴)
4642, 43, 453eqtrd 2648 . . . . . . . . . . . . . 14 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → 𝑎 = 𝐴)
4746sneqd 4137 . . . . . . . . . . . . 13 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → {𝑎} = {𝐴})
4841, 47uneq12d 3730 . . . . . . . . . . . 12 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → ( ∪ {𝑎}) = (𝐻 ∪ {𝐴}))
4948imaeq2d 5385 . . . . . . . . . . 11 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) = (𝑉 “ (𝐻 ∪ {𝐴})))
5049unieqd 4382 . . . . . . . . . 10 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) = (𝑉 “ (𝐻 ∪ {𝐴})))
51 msrval.z . . . . . . . . . 10 𝑍 = (𝑉 “ (𝐻 ∪ {𝐴}))
5250, 51syl6eqr 2662 . . . . . . . . 9 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) = 𝑍)
5336, 52sylan9eqr 2666 . . . . . . . 8 (((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) ∧ 𝑧 = (𝑉 “ ( ∪ {𝑎}))) → 𝑧 = 𝑍)
5453sqxpeqd 5065 . . . . . . 7 (((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) ∧ 𝑧 = (𝑉 “ ( ∪ {𝑎}))) → (𝑧 × 𝑧) = (𝑍 × 𝑍))
5535, 54csbied 3526 . . . . . 6 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧) = (𝑍 × 𝑍))
5629, 55ineq12d 3777 . . . . 5 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → ((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)) = (𝐷 ∩ (𝑍 × 𝑍)))
5756, 41, 46oteq123d 4355 . . . 4 ((((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) ∧ 𝑎 = (2nd𝑠)) → ⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
589, 57csbied 3526 . . 3 (((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) ∧ = (2nd ‘(1st𝑠))) → (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
597, 58csbied 3526 . 2 ((⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃𝑠 = ⟨𝐷, 𝐻, 𝐴⟩) → (2nd ‘(1st𝑠)) / (2nd𝑠) / 𝑎⟨((1st ‘(1st𝑠)) ∩ (𝑉 “ ( ∪ {𝑎})) / 𝑧(𝑧 × 𝑧)), , 𝑎⟩ = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
60 id 22 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃)
61 otex 4860 . . 3 ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ ∈ V
6261a1i 11 . 2 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩ ∈ V)
635, 59, 60, 62fvmptd 6197 1 (⟨𝐷, 𝐻, 𝐴⟩ ∈ 𝑃 → (𝑅‘⟨𝐷, 𝐻, 𝐴⟩) = ⟨(𝐷 ∩ (𝑍 × 𝑍)), 𝐻, 𝐴⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  csb 3499  cun 3538  cin 3539  wss 3540  {csn 4125  cotp 4133   cuni 4372  cmpt 4643   × cxp 5036  ccnv 5037  cima 5041  cfv 5804  1st c1st 7057  2nd c2nd 7058  Fincfn 7841  mExcmex 30618  mDVcmdv 30619  mVarscmvrs 30620  mPreStcmpst 30624  mStRedcmsr 30625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-ot 4134  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-1st 7059  df-2nd 7060  df-mpst 30644  df-msr 30645
This theorem is referenced by:  msrf  30693  msrid  30696  elmsta  30699  mthmpps  30733
  Copyright terms: Public domain W3C validator