Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mdvval Structured version   Visualization version   GIF version

Theorem mdvval 30655
Description: The set of disjoint variable conditions, which are pairs of distinct variables. (This definition differs from appendix C, which uses unordered pairs instead. We use ordered pairs, but all sets of dv conditions of interest will be symmetric, so it does not matter.) (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mdvval.v 𝑉 = (mVR‘𝑇)
mdvval.d 𝐷 = (mDV‘𝑇)
Assertion
Ref Expression
mdvval 𝐷 = ((𝑉 × 𝑉) ∖ I )

Proof of Theorem mdvval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mdvval.d . 2 𝐷 = (mDV‘𝑇)
2 fveq2 6103 . . . . . . 7 (𝑡 = 𝑇 → (mVR‘𝑡) = (mVR‘𝑇))
3 mdvval.v . . . . . . 7 𝑉 = (mVR‘𝑇)
42, 3syl6eqr 2662 . . . . . 6 (𝑡 = 𝑇 → (mVR‘𝑡) = 𝑉)
54sqxpeqd 5065 . . . . 5 (𝑡 = 𝑇 → ((mVR‘𝑡) × (mVR‘𝑡)) = (𝑉 × 𝑉))
65difeq1d 3689 . . . 4 (𝑡 = 𝑇 → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) = ((𝑉 × 𝑉) ∖ I ))
7 df-mdv 30639 . . . 4 mDV = (𝑡 ∈ V ↦ (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ))
8 fvex 6113 . . . . . 6 (mVR‘𝑡) ∈ V
98, 8xpex 6860 . . . . 5 ((mVR‘𝑡) × (mVR‘𝑡)) ∈ V
10 difexg 4735 . . . . 5 (((mVR‘𝑡) × (mVR‘𝑡)) ∈ V → (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V)
119, 10ax-mp 5 . . . 4 (((mVR‘𝑡) × (mVR‘𝑡)) ∖ I ) ∈ V
126, 7, 11fvmpt3i 6196 . . 3 (𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I ))
13 0dif 3929 . . . . 5 (∅ ∖ I ) = ∅
1413eqcomi 2619 . . . 4 ∅ = (∅ ∖ I )
15 fvprc 6097 . . . 4 𝑇 ∈ V → (mDV‘𝑇) = ∅)
16 fvprc 6097 . . . . . . . 8 𝑇 ∈ V → (mVR‘𝑇) = ∅)
173, 16syl5eq 2656 . . . . . . 7 𝑇 ∈ V → 𝑉 = ∅)
1817xpeq2d 5063 . . . . . 6 𝑇 ∈ V → (𝑉 × 𝑉) = (𝑉 × ∅))
19 xp0 5471 . . . . . 6 (𝑉 × ∅) = ∅
2018, 19syl6eq 2660 . . . . 5 𝑇 ∈ V → (𝑉 × 𝑉) = ∅)
2120difeq1d 3689 . . . 4 𝑇 ∈ V → ((𝑉 × 𝑉) ∖ I ) = (∅ ∖ I ))
2214, 15, 213eqtr4a 2670 . . 3 𝑇 ∈ V → (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I ))
2312, 22pm2.61i 175 . 2 (mDV‘𝑇) = ((𝑉 × 𝑉) ∖ I )
241, 23eqtri 2632 1 𝐷 = ((𝑉 × 𝑉) ∖ I )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  c0 3874   I cid 4948   × cxp 5036  cfv 5804  mVRcmvar 30612  mDVcmdv 30619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-mdv 30639
This theorem is referenced by:  mthmpps  30733  mclsppslem  30734
  Copyright terms: Public domain W3C validator