Mathbox for Mario Carneiro < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-mvh Structured version   Visualization version   GIF version

Definition df-mvh 30643
 Description: Define the mapping from variables to their variable hypothesis. (Contributed by Mario Carneiro, 14-Jul-2016.)
Assertion
Ref Expression
df-mvh mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩))
Distinct variable group:   𝑣,𝑡

Detailed syntax breakdown of Definition df-mvh
StepHypRef Expression
1 cmvh 30623 . 2 class mVH
2 vt . . 3 setvar 𝑡
3 cvv 3173 . . 3 class V
4 vv . . . 4 setvar 𝑣
52cv 1474 . . . . 5 class 𝑡
6 cmvar 30612 . . . . 5 class mVR
75, 6cfv 5804 . . . 4 class (mVR‘𝑡)
84cv 1474 . . . . . 6 class 𝑣
9 cmty 30613 . . . . . . 7 class mType
105, 9cfv 5804 . . . . . 6 class (mType‘𝑡)
118, 10cfv 5804 . . . . 5 class ((mType‘𝑡)‘𝑣)
128cs1 13149 . . . . 5 class ⟨“𝑣”⟩
1311, 12cop 4131 . . . 4 class ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩
144, 7, 13cmpt 4643 . . 3 class (𝑣 ∈ (mVR‘𝑡) ↦ ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩)
152, 3, 14cmpt 4643 . 2 class (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩))
161, 15wceq 1475 1 wff mVH = (𝑡 ∈ V ↦ (𝑣 ∈ (mVR‘𝑡) ↦ ⟨((mType‘𝑡)‘𝑣), ⟨“𝑣”⟩⟩))
 Colors of variables: wff setvar class This definition is referenced by:  mvhfval  30684
 Copyright terms: Public domain W3C validator