MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem1 Structured version   Visualization version   GIF version

Theorem minvecolem1 27114
Description: Lemma for minveco 27124. The set of all distances from points of 𝑌 to 𝐴 are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x 𝑋 = (BaseSet‘𝑈)
minveco.m 𝑀 = ( −𝑣𝑈)
minveco.n 𝑁 = (normCV𝑈)
minveco.y 𝑌 = (BaseSet‘𝑊)
minveco.u (𝜑𝑈 ∈ CPreHilOLD)
minveco.w (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
minveco.a (𝜑𝐴𝑋)
minveco.d 𝐷 = (IndMet‘𝑈)
minveco.j 𝐽 = (MetOpen‘𝐷)
minveco.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
Assertion
Ref Expression
minvecolem1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Distinct variable groups:   𝑦,𝑤,𝐽   𝑤,𝑀,𝑦   𝑤,𝑁,𝑦   𝜑,𝑤,𝑦   𝑤,𝑅   𝑤,𝐴,𝑦   𝑤,𝐷,𝑦   𝑤,𝑈,𝑦   𝑤,𝑊,𝑦   𝑤,𝑋   𝑤,𝑌,𝑦
Allowed substitution hints:   𝑅(𝑦)   𝑋(𝑦)

Proof of Theorem minvecolem1
StepHypRef Expression
1 minveco.r . . 3 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
2 minveco.u . . . . . . . 8 (𝜑𝑈 ∈ CPreHilOLD)
3 phnv 27053 . . . . . . . 8 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
42, 3syl 17 . . . . . . 7 (𝜑𝑈 ∈ NrmCVec)
54adantr 480 . . . . . 6 ((𝜑𝑦𝑌) → 𝑈 ∈ NrmCVec)
6 minveco.a . . . . . . . 8 (𝜑𝐴𝑋)
76adantr 480 . . . . . . 7 ((𝜑𝑦𝑌) → 𝐴𝑋)
8 minveco.w . . . . . . . . . . 11 (𝜑𝑊 ∈ ((SubSp‘𝑈) ∩ CBan))
9 elin 3758 . . . . . . . . . . 11 (𝑊 ∈ ((SubSp‘𝑈) ∩ CBan) ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
108, 9sylib 207 . . . . . . . . . 10 (𝜑 → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝑊 ∈ CBan))
1110simpld 474 . . . . . . . . 9 (𝜑𝑊 ∈ (SubSp‘𝑈))
12 minveco.x . . . . . . . . . 10 𝑋 = (BaseSet‘𝑈)
13 minveco.y . . . . . . . . . 10 𝑌 = (BaseSet‘𝑊)
14 eqid 2610 . . . . . . . . . 10 (SubSp‘𝑈) = (SubSp‘𝑈)
1512, 13, 14sspba 26966 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑌𝑋)
164, 11, 15syl2anc 691 . . . . . . . 8 (𝜑𝑌𝑋)
1716sselda 3568 . . . . . . 7 ((𝜑𝑦𝑌) → 𝑦𝑋)
18 minveco.m . . . . . . . 8 𝑀 = ( −𝑣𝑈)
1912, 18nvmcl 26885 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑦𝑋) → (𝐴𝑀𝑦) ∈ 𝑋)
205, 7, 17, 19syl3anc 1318 . . . . . 6 ((𝜑𝑦𝑌) → (𝐴𝑀𝑦) ∈ 𝑋)
21 minveco.n . . . . . . 7 𝑁 = (normCV𝑈)
2212, 21nvcl 26900 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
235, 20, 22syl2anc 691 . . . . 5 ((𝜑𝑦𝑌) → (𝑁‘(𝐴𝑀𝑦)) ∈ ℝ)
24 eqid 2610 . . . . 5 (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))
2523, 24fmptd 6292 . . . 4 (𝜑 → (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))):𝑌⟶ℝ)
26 frn 5966 . . . 4 ((𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))):𝑌⟶ℝ → ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ⊆ ℝ)
2725, 26syl 17 . . 3 (𝜑 → ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ⊆ ℝ)
281, 27syl5eqss 3612 . 2 (𝜑𝑅 ⊆ ℝ)
2910simprd 478 . . . . . 6 (𝜑𝑊 ∈ CBan)
30 bnnv 27106 . . . . . 6 (𝑊 ∈ CBan → 𝑊 ∈ NrmCVec)
31 eqid 2610 . . . . . . 7 (0vec𝑊) = (0vec𝑊)
3213, 31nvzcl 26873 . . . . . 6 (𝑊 ∈ NrmCVec → (0vec𝑊) ∈ 𝑌)
3329, 30, 323syl 18 . . . . 5 (𝜑 → (0vec𝑊) ∈ 𝑌)
34 fvex 6113 . . . . . 6 (𝑁‘(𝐴𝑀𝑦)) ∈ V
3534, 24dmmpti 5936 . . . . 5 dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = 𝑌
3633, 35syl6eleqr 2699 . . . 4 (𝜑 → (0vec𝑊) ∈ dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))))
37 ne0i 3880 . . . 4 ((0vec𝑊) ∈ dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) → dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅)
3836, 37syl 17 . . 3 (𝜑 → dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅)
39 dm0rn0 5263 . . . . 5 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅)
401eqeq1i 2615 . . . . 5 (𝑅 = ∅ ↔ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅)
4139, 40bitr4i 266 . . . 4 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) = ∅ ↔ 𝑅 = ∅)
4241necon3bii 2834 . . 3 (dom (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦))) ≠ ∅ ↔ 𝑅 ≠ ∅)
4338, 42sylib 207 . 2 (𝜑𝑅 ≠ ∅)
4412, 21nvge0 26912 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑀𝑦) ∈ 𝑋) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
455, 20, 44syl2anc 691 . . . . 5 ((𝜑𝑦𝑌) → 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
4645ralrimiva 2949 . . . 4 (𝜑 → ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
4734rgenw 2908 . . . . 5 𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V
48 breq2 4587 . . . . . 6 (𝑤 = (𝑁‘(𝐴𝑀𝑦)) → (0 ≤ 𝑤 ↔ 0 ≤ (𝑁‘(𝐴𝑀𝑦))))
4924, 48ralrnmpt 6276 . . . . 5 (∀𝑦𝑌 (𝑁‘(𝐴𝑀𝑦)) ∈ V → (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦))))
5047, 49ax-mp 5 . . . 4 (∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤 ↔ ∀𝑦𝑌 0 ≤ (𝑁‘(𝐴𝑀𝑦)))
5146, 50sylibr 223 . . 3 (𝜑 → ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤)
521raleqi 3119 . . 3 (∀𝑤𝑅 0 ≤ 𝑤 ↔ ∀𝑤 ∈ ran (𝑦𝑌 ↦ (𝑁‘(𝐴𝑀𝑦)))0 ≤ 𝑤)
5351, 52sylibr 223 . 2 (𝜑 → ∀𝑤𝑅 0 ≤ 𝑤)
5428, 43, 533jca 1235 1 (𝜑 → (𝑅 ⊆ ℝ ∧ 𝑅 ≠ ∅ ∧ ∀𝑤𝑅 0 ≤ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  cin 3539  wss 3540  c0 3874   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  wf 5800  cfv 5804  (class class class)co 6549  cr 9814  0cc0 9815  cle 9954  MetOpencmopn 19557  NrmCVeccnv 26823  BaseSetcba 26825  0veccn0v 26827  𝑣 cnsb 26828  normCVcnmcv 26829  IndMetcims 26830  SubSpcss 26960  CPreHilOLDccphlo 27051  CBanccbn 27102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ssp 26961  df-ph 27052  df-cbn 27103
This theorem is referenced by:  minvecolem2  27115  minvecolem3  27116  minvecolem4c  27119  minvecolem4  27120  minvecolem5  27121  minvecolem6  27122
  Copyright terms: Public domain W3C validator