MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minvecolem1 Structured version   Unicode version

Theorem minvecolem1 26190
Description: Lemma for minveco 26200. The set of all distances from points of  Y to  A are a nonempty set of nonnegative reals. (Contributed by Mario Carneiro, 8-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
minveco.x  |-  X  =  ( BaseSet `  U )
minveco.m  |-  M  =  ( -v `  U
)
minveco.n  |-  N  =  ( normCV `  U )
minveco.y  |-  Y  =  ( BaseSet `  W )
minveco.u  |-  ( ph  ->  U  e.  CPreHil OLD )
minveco.w  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
minveco.a  |-  ( ph  ->  A  e.  X )
minveco.d  |-  D  =  ( IndMet `  U )
minveco.j  |-  J  =  ( MetOpen `  D )
minveco.r  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
Assertion
Ref Expression
minvecolem1  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
Distinct variable groups:    y, w, J    w, M, y    w, N, y    ph, w, y   
w, R    w, A, y    w, D, y    w, U, y    w, W, y   
w, X    w, Y, y
Allowed substitution hints:    R( y)    X( y)

Proof of Theorem minvecolem1
StepHypRef Expression
1 minveco.r . . 3  |-  R  =  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
2 minveco.u . . . . . . . 8  |-  ( ph  ->  U  e.  CPreHil OLD )
3 phnv 26129 . . . . . . . 8  |-  ( U  e.  CPreHil OLD  ->  U  e.  NrmCVec )
42, 3syl 17 . . . . . . 7  |-  ( ph  ->  U  e.  NrmCVec )
54adantr 463 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  U  e.  NrmCVec )
6 minveco.a . . . . . . . 8  |-  ( ph  ->  A  e.  X )
76adantr 463 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  A  e.  X )
8 minveco.w . . . . . . . . . . 11  |-  ( ph  ->  W  e.  ( (
SubSp `  U )  i^i 
CBan ) )
9 elin 3625 . . . . . . . . . . 11  |-  ( W  e.  ( ( SubSp `  U )  i^i  CBan ) 
<->  ( W  e.  (
SubSp `  U )  /\  W  e.  CBan ) )
108, 9sylib 196 . . . . . . . . . 10  |-  ( ph  ->  ( W  e.  (
SubSp `  U )  /\  W  e.  CBan ) )
1110simpld 457 . . . . . . . . 9  |-  ( ph  ->  W  e.  ( SubSp `  U ) )
12 minveco.x . . . . . . . . . 10  |-  X  =  ( BaseSet `  U )
13 minveco.y . . . . . . . . . 10  |-  Y  =  ( BaseSet `  W )
14 eqid 2402 . . . . . . . . . 10  |-  ( SubSp `  U )  =  (
SubSp `  U )
1512, 13, 14sspba 26040 . . . . . . . . 9  |-  ( ( U  e.  NrmCVec  /\  W  e.  ( SubSp `  U )
)  ->  Y  C_  X
)
164, 11, 15syl2anc 659 . . . . . . . 8  |-  ( ph  ->  Y  C_  X )
1716sselda 3441 . . . . . . 7  |-  ( (
ph  /\  y  e.  Y )  ->  y  e.  X )
18 minveco.m . . . . . . . 8  |-  M  =  ( -v `  U
)
1912, 18nvmcl 25942 . . . . . . 7  |-  ( ( U  e.  NrmCVec  /\  A  e.  X  /\  y  e.  X )  ->  ( A M y )  e.  X )
205, 7, 17, 19syl3anc 1230 . . . . . 6  |-  ( (
ph  /\  y  e.  Y )  ->  ( A M y )  e.  X )
21 minveco.n . . . . . . 7  |-  N  =  ( normCV `  U )
2212, 21nvcl 25962 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( A M y )  e.  X )  ->  ( N `  ( A M y ) )  e.  RR )
235, 20, 22syl2anc 659 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  ( N `  ( A M y ) )  e.  RR )
24 eqid 2402 . . . . 5  |-  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  ( y  e.  Y  |->  ( N `  ( A M y ) ) )
2523, 24fmptd 6032 . . . 4  |-  ( ph  ->  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) : Y --> RR )
26 frn 5719 . . . 4  |-  ( ( y  e.  Y  |->  ( N `  ( A M y ) ) ) : Y --> RR  ->  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  C_  RR )
2725, 26syl 17 . . 3  |-  ( ph  ->  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  C_  RR )
281, 27syl5eqss 3485 . 2  |-  ( ph  ->  R  C_  RR )
2910simprd 461 . . . . . 6  |-  ( ph  ->  W  e.  CBan )
30 bnnv 26182 . . . . . 6  |-  ( W  e.  CBan  ->  W  e.  NrmCVec )
31 eqid 2402 . . . . . . 7  |-  ( 0vec `  W )  =  (
0vec `  W )
3213, 31nvzcl 25929 . . . . . 6  |-  ( W  e.  NrmCVec  ->  ( 0vec `  W
)  e.  Y )
3329, 30, 323syl 20 . . . . 5  |-  ( ph  ->  ( 0vec `  W
)  e.  Y )
34 fvex 5858 . . . . . 6  |-  ( N `
 ( A M y ) )  e. 
_V
3534, 24dmmpti 5692 . . . . 5  |-  dom  (
y  e.  Y  |->  ( N `  ( A M y ) ) )  =  Y
3633, 35syl6eleqr 2501 . . . 4  |-  ( ph  ->  ( 0vec `  W
)  e.  dom  (
y  e.  Y  |->  ( N `  ( A M y ) ) ) )
37 ne0i 3743 . . . 4  |-  ( (
0vec `  W )  e.  dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  ->  dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =/=  (/) )
3836, 37syl 17 . . 3  |-  ( ph  ->  dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =/=  (/) )
39 dm0rn0 5039 . . . . 5  |-  ( dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =  (/)  <->  ran  ( y  e.  Y  |->  ( N `
 ( A M y ) ) )  =  (/) )
401eqeq1i 2409 . . . . 5  |-  ( R  =  (/)  <->  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =  (/) )
4139, 40bitr4i 252 . . . 4  |-  ( dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =  (/)  <->  R  =  (/) )
4241necon3bii 2671 . . 3  |-  ( dom  ( y  e.  Y  |->  ( N `  ( A M y ) ) )  =/=  (/)  <->  R  =/=  (/) )
4338, 42sylib 196 . 2  |-  ( ph  ->  R  =/=  (/) )
4412, 21nvge0 25977 . . . . . 6  |-  ( ( U  e.  NrmCVec  /\  ( A M y )  e.  X )  ->  0  <_  ( N `  ( A M y ) ) )
455, 20, 44syl2anc 659 . . . . 5  |-  ( (
ph  /\  y  e.  Y )  ->  0  <_  ( N `  ( A M y ) ) )
4645ralrimiva 2817 . . . 4  |-  ( ph  ->  A. y  e.  Y 
0  <_  ( N `  ( A M y ) ) )
4734rgenw 2764 . . . . 5  |-  A. y  e.  Y  ( N `  ( A M y ) )  e.  _V
48 breq2 4398 . . . . . 6  |-  ( w  =  ( N `  ( A M y ) )  ->  ( 0  <_  w  <->  0  <_  ( N `  ( A M y ) ) ) )
4924, 48ralrnmpt 6017 . . . . 5  |-  ( A. y  e.  Y  ( N `  ( A M y ) )  e.  _V  ->  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) 0  <_  w  <->  A. y  e.  Y  0  <_  ( N `  ( A M y ) ) ) )
5047, 49ax-mp 5 . . . 4  |-  ( A. w  e.  ran  ( y  e.  Y  |->  ( N `
 ( A M y ) ) ) 0  <_  w  <->  A. y  e.  Y  0  <_  ( N `  ( A M y ) ) )
5146, 50sylibr 212 . . 3  |-  ( ph  ->  A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) 0  <_  w
)
521raleqi 3007 . . 3  |-  ( A. w  e.  R  0  <_  w  <->  A. w  e.  ran  ( y  e.  Y  |->  ( N `  ( A M y ) ) ) 0  <_  w
)
5351, 52sylibr 212 . 2  |-  ( ph  ->  A. w  e.  R 
0  <_  w )
5428, 43, 533jca 1177 1  |-  ( ph  ->  ( R  C_  RR  /\  R  =/=  (/)  /\  A. w  e.  R  0  <_  w ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2753   _Vcvv 3058    i^i cin 3412    C_ wss 3413   (/)c0 3737   class class class wbr 4394    |-> cmpt 4452   dom cdm 4822   ran crn 4823   -->wf 5564   ` cfv 5568  (class class class)co 6277   RRcr 9520   0cc0 9521    <_ cle 9658   MetOpencmopn 18726   NrmCVeccnv 25877   BaseSetcba 25879   0veccn0v 25881   -vcnsb 25882   normCVcnmcv 25883   IndMetcims 25884   SubSpcss 26034   CPreHil OLDccphlo 26127   CBanccbn 26178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598  ax-pre-sup 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-er 7347  df-en 7554  df-dom 7555  df-sdom 7556  df-sup 7934  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-div 10247  df-nn 10576  df-2 10634  df-3 10635  df-n0 10836  df-z 10905  df-uz 11127  df-rp 11265  df-seq 12150  df-exp 12209  df-cj 13079  df-re 13080  df-im 13081  df-sqrt 13215  df-abs 13216  df-grpo 25593  df-gid 25594  df-ginv 25595  df-gdiv 25596  df-ablo 25684  df-vc 25839  df-nv 25885  df-va 25888  df-ba 25889  df-sm 25890  df-0v 25891  df-vs 25892  df-nmcv 25893  df-ssp 26035  df-ph 26128  df-cbn 26179
This theorem is referenced by:  minvecolem2  26191  minvecolem3  26192  minvecolem4c  26195  minvecolem4  26196  minvecolem5  26197  minvecolem6  26198
  Copyright terms: Public domain W3C validator