Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  phnv Structured version   Visualization version   GIF version

Theorem phnv 27053
 Description: Every complex inner product space is a normed complex vector space. (Contributed by NM, 2-Apr-2007.) (New usage is discouraged.)
Assertion
Ref Expression
phnv (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)

Proof of Theorem phnv
Dummy variables 𝑔 𝑛 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ph 27052 . . 3 CPreHilOLD = (NrmCVec ∩ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))})
2 inss1 3795 . . 3 (NrmCVec ∩ {⟨⟨𝑔, 𝑠⟩, 𝑛⟩ ∣ ∀𝑥 ∈ ran 𝑔𝑦 ∈ ran 𝑔(((𝑛‘(𝑥𝑔𝑦))↑2) + ((𝑛‘(𝑥𝑔(-1𝑠𝑦)))↑2)) = (2 · (((𝑛𝑥)↑2) + ((𝑛𝑦)↑2)))}) ⊆ NrmCVec
31, 2eqsstri 3598 . 2 CPreHilOLD ⊆ NrmCVec
43sseli 3564 1 (𝑈 ∈ CPreHilOLD𝑈 ∈ NrmCVec)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ∩ cin 3539  ran crn 5039  ‘cfv 5804  (class class class)co 6549  {coprab 6550  1c1 9816   + caddc 9818   · cmul 9820  -cneg 10146  2c2 10947  ↑cexp 12722  NrmCVeccnv 26823  CPreHilOLDccphlo 27051 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-v 3175  df-in 3547  df-ss 3554  df-ph 27052 This theorem is referenced by:  phrel  27054  phnvi  27055  phop  27057  isph  27061  dipdi  27082  dipassr  27085  dipsubdir  27087  dipsubdi  27088  sspph  27094  ajval  27101  minvecolem1  27114  minvecolem2  27115  minvecolem3  27116  minvecolem4a  27117  minvecolem4b  27118  minvecolem4  27120  minvecolem5  27121  minvecolem6  27122  minvecolem7  27123
 Copyright terms: Public domain W3C validator