Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bnnv Structured version   Visualization version   GIF version

Theorem bnnv 27106
 Description: Every complex Banach space is a normed complex vector space. (Contributed by NM, 17-Mar-2007.) (New usage is discouraged.)
Assertion
Ref Expression
bnnv (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)

Proof of Theorem bnnv
StepHypRef Expression
1 eqid 2610 . . 3 (BaseSet‘𝑈) = (BaseSet‘𝑈)
2 eqid 2610 . . 3 (IndMet‘𝑈) = (IndMet‘𝑈)
31, 2iscbn 27104 . 2 (𝑈 ∈ CBan ↔ (𝑈 ∈ NrmCVec ∧ (IndMet‘𝑈) ∈ (CMet‘(BaseSet‘𝑈))))
43simplbi 475 1 (𝑈 ∈ CBan → 𝑈 ∈ NrmCVec)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 1977  ‘cfv 5804  CMetcms 22860  NrmCVeccnv 26823  BaseSetcba 26825  IndMetcims 26830  CBanccbn 27102 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-iota 5768  df-fv 5812  df-cbn 27103 This theorem is referenced by:  bnrel  27107  bnsscmcl  27108  ubthlem1  27110  ubthlem2  27111  ubthlem3  27112  minvecolem1  27114  hlnv  27131
 Copyright terms: Public domain W3C validator