MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mideulem2 Structured version   Visualization version   GIF version

Theorem mideulem2 25426
Description: Lemma for opphllem 25427, which is itself used for mideu 25430. (Contributed by Thierry Arnoux, 19-Feb-2020.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvG‘𝐺)
mideu.1 (𝜑𝐴𝑃)
mideu.2 (𝜑𝐵𝑃)
mideulem.1 (𝜑𝐴𝐵)
mideulem.2 (𝜑𝑄𝑃)
mideulem.3 (𝜑𝑂𝑃)
mideulem.4 (𝜑𝑇𝑃)
mideulem.5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
mideulem.6 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
mideulem.7 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
mideulem.8 (𝜑𝑇 ∈ (𝑄𝐼𝑂))
opphllem.1 (𝜑𝑅𝑃)
opphllem.2 (𝜑𝑅 ∈ (𝐵𝐼𝑄))
opphllem.3 (𝜑 → (𝐴 𝑂) = (𝐵 𝑅))
mideulem2.1 (𝜑𝑋𝑃)
mideulem2.2 (𝜑𝑋 ∈ (𝑇𝐼𝐵))
mideulem2.3 (𝜑𝑋 ∈ (𝑅𝐼𝑂))
mideulem2.4 (𝜑𝑍𝑃)
mideulem2.5 (𝜑𝑋 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑍))
mideulem2.6 (𝜑 → (𝑋 𝑍) = (𝑋 𝑅))
mideulem2.7 (𝜑𝑀𝑃)
mideulem2.8 (𝜑𝑅 = ((𝑆𝑀)‘𝑍))
Assertion
Ref Expression
mideulem2 (𝜑𝐵 = 𝑀)

Proof of Theorem mideulem2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 oveq2 6557 . . 3 (𝑦 = 𝐵 → (𝑅𝐿𝑦) = (𝑅𝐿𝐵))
21breq1d 4593 . 2 (𝑦 = 𝐵 → ((𝑅𝐿𝑦)(⟂G‘𝐺)(𝐴𝐿𝐵) ↔ (𝑅𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝐵)))
3 oveq2 6557 . . 3 (𝑦 = 𝑀 → (𝑅𝐿𝑦) = (𝑅𝐿𝑀))
43breq1d 4593 . 2 (𝑦 = 𝑀 → ((𝑅𝐿𝑦)(⟂G‘𝐺)(𝐴𝐿𝐵) ↔ (𝑅𝐿𝑀)(⟂G‘𝐺)(𝐴𝐿𝐵)))
5 colperpex.p . . 3 𝑃 = (Base‘𝐺)
6 colperpex.d . . 3 = (dist‘𝐺)
7 colperpex.i . . 3 𝐼 = (Itv‘𝐺)
8 colperpex.l . . 3 𝐿 = (LineG‘𝐺)
9 colperpex.g . . 3 (𝜑𝐺 ∈ TarskiG)
10 mideu.1 . . . 4 (𝜑𝐴𝑃)
11 mideu.2 . . . 4 (𝜑𝐵𝑃)
12 mideulem.1 . . . 4 (𝜑𝐴𝐵)
135, 7, 8, 9, 10, 11, 12tgelrnln 25325 . . 3 (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿)
14 opphllem.1 . . 3 (𝜑𝑅𝑃)
1512adantr 480 . . . . . 6 ((𝜑𝑅 ∈ (𝐴𝐿𝐵)) → 𝐴𝐵)
1615neneqd 2787 . . . . 5 ((𝜑𝑅 ∈ (𝐴𝐿𝐵)) → ¬ 𝐴 = 𝐵)
17 mideulem.3 . . . . . . . . 9 (𝜑𝑂𝑃)
18 opphllem.3 . . . . . . . . 9 (𝜑 → (𝐴 𝑂) = (𝐵 𝑅))
19 mideulem.6 . . . . . . . . . . 11 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑂))
208, 9, 19perpln2 25406 . . . . . . . . . 10 (𝜑 → (𝐴𝐿𝑂) ∈ ran 𝐿)
215, 7, 8, 9, 10, 17, 20tglnne 25323 . . . . . . . . 9 (𝜑𝐴𝑂)
225, 6, 7, 9, 10, 17, 11, 14, 18, 21tgcgrneq 25178 . . . . . . . 8 (𝜑𝐵𝑅)
2322adantr 480 . . . . . . 7 ((𝜑𝑅 ∈ (𝐴𝐿𝐵)) → 𝐵𝑅)
2423necomd 2837 . . . . . 6 ((𝜑𝑅 ∈ (𝐴𝐿𝐵)) → 𝑅𝐵)
2524neneqd 2787 . . . . 5 ((𝜑𝑅 ∈ (𝐴𝐿𝐵)) → ¬ 𝑅 = 𝐵)
2616, 25jca 553 . . . 4 ((𝜑𝑅 ∈ (𝐴𝐿𝐵)) → (¬ 𝐴 = 𝐵 ∧ ¬ 𝑅 = 𝐵))
27 mideu.s . . . . . 6 𝑆 = (pInvG‘𝐺)
289adantr 480 . . . . . 6 ((𝜑𝑅 ∈ (𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
2910adantr 480 . . . . . 6 ((𝜑𝑅 ∈ (𝐴𝐿𝐵)) → 𝐴𝑃)
3011adantr 480 . . . . . 6 ((𝜑𝑅 ∈ (𝐴𝐿𝐵)) → 𝐵𝑃)
3114adantr 480 . . . . . 6 ((𝜑𝑅 ∈ (𝐴𝐿𝐵)) → 𝑅𝑃)
32 mideulem.2 . . . . . . . . 9 (𝜑𝑄𝑃)
33 mideulem.5 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑄𝐿𝐵))
348, 9, 33perpln2 25406 . . . . . . . . . . . 12 (𝜑 → (𝑄𝐿𝐵) ∈ ran 𝐿)
355, 7, 8, 9, 32, 11, 34tglnne 25323 . . . . . . . . . . 11 (𝜑𝑄𝐵)
365, 7, 8, 9, 32, 11, 35tglinerflx2 25329 . . . . . . . . . 10 (𝜑𝐵 ∈ (𝑄𝐿𝐵))
375, 6, 7, 8, 9, 13, 34, 33perpcom 25408 . . . . . . . . . . 11 (𝜑 → (𝑄𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝐵))
385, 7, 8, 9, 10, 11, 12tglinecom 25330 . . . . . . . . . . 11 (𝜑 → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
3937, 38breqtrd 4609 . . . . . . . . . 10 (𝜑 → (𝑄𝐿𝐵)(⟂G‘𝐺)(𝐵𝐿𝐴))
405, 6, 7, 8, 9, 32, 11, 36, 10, 39perprag 25418 . . . . . . . . 9 (𝜑 → ⟨“𝑄𝐵𝐴”⟩ ∈ (∟G‘𝐺))
41 opphllem.2 . . . . . . . . . 10 (𝜑𝑅 ∈ (𝐵𝐼𝑄))
425, 8, 7, 9, 11, 14, 32, 41btwncolg3 25252 . . . . . . . . 9 (𝜑 → (𝑄 ∈ (𝐵𝐿𝑅) ∨ 𝐵 = 𝑅))
435, 6, 7, 8, 27, 9, 32, 11, 10, 14, 40, 35, 42ragcol 25394 . . . . . . . 8 (𝜑 → ⟨“𝑅𝐵𝐴”⟩ ∈ (∟G‘𝐺))
445, 6, 7, 8, 27, 9, 14, 11, 10, 43ragcom 25393 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝑅”⟩ ∈ (∟G‘𝐺))
4544adantr 480 . . . . . 6 ((𝜑𝑅 ∈ (𝐴𝐿𝐵)) → ⟨“𝐴𝐵𝑅”⟩ ∈ (∟G‘𝐺))
46 simpr 476 . . . . . . 7 ((𝜑𝑅 ∈ (𝐴𝐿𝐵)) → 𝑅 ∈ (𝐴𝐿𝐵))
4746orcd 406 . . . . . 6 ((𝜑𝑅 ∈ (𝐴𝐿𝐵)) → (𝑅 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
485, 6, 7, 8, 27, 28, 29, 30, 31, 45, 47ragflat3 25401 . . . . 5 ((𝜑𝑅 ∈ (𝐴𝐿𝐵)) → (𝐴 = 𝐵𝑅 = 𝐵))
49 oran 516 . . . . 5 ((𝐴 = 𝐵𝑅 = 𝐵) ↔ ¬ (¬ 𝐴 = 𝐵 ∧ ¬ 𝑅 = 𝐵))
5048, 49sylib 207 . . . 4 ((𝜑𝑅 ∈ (𝐴𝐿𝐵)) → ¬ (¬ 𝐴 = 𝐵 ∧ ¬ 𝑅 = 𝐵))
5126, 50pm2.65da 598 . . 3 (𝜑 → ¬ 𝑅 ∈ (𝐴𝐿𝐵))
525, 6, 7, 8, 9, 13, 14, 51foot 25414 . 2 (𝜑 → ∃!𝑦 ∈ (𝐴𝐿𝐵)(𝑅𝐿𝑦)(⟂G‘𝐺)(𝐴𝐿𝐵))
535, 7, 8, 9, 10, 11, 12tglinerflx2 25329 . 2 (𝜑𝐵 ∈ (𝐴𝐿𝐵))
54 mideulem2.1 . . 3 (𝜑𝑋𝑃)
5512neneqd 2787 . . . . 5 (𝜑 → ¬ 𝐴 = 𝐵)
56 oveq2 6557 . . . . . . 7 (𝑦 = 𝐴 → (𝑅𝐿𝑦) = (𝑅𝐿𝐴))
5756breq1d 4593 . . . . . 6 (𝑦 = 𝐴 → ((𝑅𝐿𝑦)(⟂G‘𝐺)(𝐴𝐿𝐵) ↔ (𝑅𝐿𝐴)(⟂G‘𝐺)(𝐴𝐿𝐵)))
5852adantr 480 . . . . . 6 ((𝜑𝑋 = 𝐴) → ∃!𝑦 ∈ (𝐴𝐿𝐵)(𝑅𝐿𝑦)(⟂G‘𝐺)(𝐴𝐿𝐵))
595, 7, 8, 9, 10, 11, 12tglinerflx1 25328 . . . . . . 7 (𝜑𝐴 ∈ (𝐴𝐿𝐵))
6059adantr 480 . . . . . 6 ((𝜑𝑋 = 𝐴) → 𝐴 ∈ (𝐴𝐿𝐵))
6153adantr 480 . . . . . 6 ((𝜑𝑋 = 𝐴) → 𝐵 ∈ (𝐴𝐿𝐵))
629adantr 480 . . . . . . . . 9 ((𝜑𝑋 = 𝐴) → 𝐺 ∈ TarskiG)
6314adantr 480 . . . . . . . . 9 ((𝜑𝑋 = 𝐴) → 𝑅𝑃)
6410adantr 480 . . . . . . . . 9 ((𝜑𝑋 = 𝐴) → 𝐴𝑃)
6551, 55jca 553 . . . . . . . . . . . 12 (𝜑 → (¬ 𝑅 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵))
66 pm4.56 515 . . . . . . . . . . . 12 ((¬ 𝑅 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝐴 = 𝐵) ↔ ¬ (𝑅 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
6765, 66sylib 207 . . . . . . . . . . 11 (𝜑 → ¬ (𝑅 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
685, 7, 8, 9, 14, 10, 11, 67ncolne1 25320 . . . . . . . . . 10 (𝜑𝑅𝐴)
6968adantr 480 . . . . . . . . 9 ((𝜑𝑋 = 𝐴) → 𝑅𝐴)
705, 7, 8, 62, 63, 64, 69tglinecom 25330 . . . . . . . 8 ((𝜑𝑋 = 𝐴) → (𝑅𝐿𝐴) = (𝐴𝐿𝑅))
7169necomd 2837 . . . . . . . . 9 ((𝜑𝑋 = 𝐴) → 𝐴𝑅)
7217adantr 480 . . . . . . . . 9 ((𝜑𝑋 = 𝐴) → 𝑂𝑃)
7321necomd 2837 . . . . . . . . . 10 (𝜑𝑂𝐴)
7473adantr 480 . . . . . . . . 9 ((𝜑𝑋 = 𝐴) → 𝑂𝐴)
7554adantr 480 . . . . . . . . . . 11 ((𝜑𝑋 = 𝐴) → 𝑋𝑃)
76 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑋 = 𝐴) → 𝑋 = 𝐴)
7776, 71eqnetrd 2849 . . . . . . . . . . 11 ((𝜑𝑋 = 𝐴) → 𝑋𝑅)
78 mideulem2.3 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (𝑅𝐼𝑂))
795, 6, 7, 9, 14, 54, 17, 78tgbtwncom 25183 . . . . . . . . . . . . . . 15 (𝜑𝑋 ∈ (𝑂𝐼𝑅))
80 mideulem.4 . . . . . . . . . . . . . . . . 17 (𝜑𝑇𝑃)
81 mideulem.7 . . . . . . . . . . . . . . . . 17 (𝜑𝑇 ∈ (𝐴𝐿𝐵))
82 mideulem2.2 . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ∈ (𝑇𝐼𝐵))
835, 7, 8, 9, 80, 10, 11, 54, 81, 82coltr3 25343 . . . . . . . . . . . . . . . 16 (𝜑𝑋 ∈ (𝐴𝐿𝐵))
8412necomd 2837 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐵𝐴)
8584neneqd 2787 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 𝐵 = 𝐴)
8685adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ¬ 𝐵 = 𝐴)
8773neneqd 2787 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 𝑂 = 𝐴)
8887adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ¬ 𝑂 = 𝐴)
8986, 88jca 553 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴))
909adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝐺 ∈ TarskiG)
9111adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝐵𝑃)
9210adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝐴𝑃)
9317adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝑂𝑃)
945, 7, 8, 9, 11, 10, 84tglinerflx2 25329 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐴 ∈ (𝐵𝐿𝐴))
9538, 19eqbrtrrd 4607 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝐴𝐿𝑂))
965, 6, 7, 8, 9, 11, 10, 94, 17, 95perprag 25418 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ⟨“𝐵𝐴𝑂”⟩ ∈ (∟G‘𝐺))
9796adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ⟨“𝐵𝐴𝑂”⟩ ∈ (∟G‘𝐺))
98 simpr 476 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → 𝑂 ∈ (𝐵𝐿𝐴))
9998orcd 406 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → (𝑂 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
1005, 6, 7, 8, 27, 90, 91, 92, 93, 97, 99ragflat3 25401 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → (𝐵 = 𝐴𝑂 = 𝐴))
101 oran 516 . . . . . . . . . . . . . . . . . . 19 ((𝐵 = 𝐴𝑂 = 𝐴) ↔ ¬ (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴))
102100, 101sylib 207 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑂 ∈ (𝐵𝐿𝐴)) → ¬ (¬ 𝐵 = 𝐴 ∧ ¬ 𝑂 = 𝐴))
10389, 102pm2.65da 598 . . . . . . . . . . . . . . . . 17 (𝜑 → ¬ 𝑂 ∈ (𝐵𝐿𝐴))
104103, 38neleqtrrd 2710 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝑂 ∈ (𝐴𝐿𝐵))
105 nelne2 2879 . . . . . . . . . . . . . . . 16 ((𝑋 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝑂 ∈ (𝐴𝐿𝐵)) → 𝑋𝑂)
10683, 104, 105syl2anc 691 . . . . . . . . . . . . . . 15 (𝜑𝑋𝑂)
1075, 6, 7, 9, 17, 54, 14, 79, 106tgbtwnne 25185 . . . . . . . . . . . . . 14 (𝜑𝑂𝑅)
108107adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑋 = 𝐴) → 𝑂𝑅)
109108necomd 2837 . . . . . . . . . . . 12 ((𝜑𝑋 = 𝐴) → 𝑅𝑂)
11078adantr 480 . . . . . . . . . . . 12 ((𝜑𝑋 = 𝐴) → 𝑋 ∈ (𝑅𝐼𝑂))
1115, 7, 8, 62, 63, 72, 75, 109, 110btwnlng1 25314 . . . . . . . . . . 11 ((𝜑𝑋 = 𝐴) → 𝑋 ∈ (𝑅𝐿𝑂))
1125, 7, 8, 62, 75, 63, 72, 77, 111, 109lnrot2 25319 . . . . . . . . . 10 ((𝜑𝑋 = 𝐴) → 𝑂 ∈ (𝑋𝐿𝑅))
11376oveq1d 6564 . . . . . . . . . 10 ((𝜑𝑋 = 𝐴) → (𝑋𝐿𝑅) = (𝐴𝐿𝑅))
114112, 113eleqtrd 2690 . . . . . . . . 9 ((𝜑𝑋 = 𝐴) → 𝑂 ∈ (𝐴𝐿𝑅))
1155, 7, 8, 62, 64, 63, 71, 72, 74, 114tglineelsb2 25327 . . . . . . . 8 ((𝜑𝑋 = 𝐴) → (𝐴𝐿𝑅) = (𝐴𝐿𝑂))
11670, 115eqtrd 2644 . . . . . . 7 ((𝜑𝑋 = 𝐴) → (𝑅𝐿𝐴) = (𝐴𝐿𝑂))
1175, 6, 7, 8, 9, 13, 20, 19perpcom 25408 . . . . . . . 8 (𝜑 → (𝐴𝐿𝑂)(⟂G‘𝐺)(𝐴𝐿𝐵))
118117adantr 480 . . . . . . 7 ((𝜑𝑋 = 𝐴) → (𝐴𝐿𝑂)(⟂G‘𝐺)(𝐴𝐿𝐵))
119116, 118eqbrtrd 4605 . . . . . 6 ((𝜑𝑋 = 𝐴) → (𝑅𝐿𝐴)(⟂G‘𝐺)(𝐴𝐿𝐵))
12013adantr 480 . . . . . . 7 ((𝜑𝑋 = 𝐴) → (𝐴𝐿𝐵) ∈ ran 𝐿)
12122necomd 2837 . . . . . . . . 9 (𝜑𝑅𝐵)
1225, 7, 8, 9, 14, 11, 121tgelrnln 25325 . . . . . . . 8 (𝜑 → (𝑅𝐿𝐵) ∈ ran 𝐿)
123122adantr 480 . . . . . . 7 ((𝜑𝑋 = 𝐴) → (𝑅𝐿𝐵) ∈ ran 𝐿)
1245, 7, 8, 9, 14, 11, 121tglinerflx2 25329 . . . . . . . . . 10 (𝜑𝐵 ∈ (𝑅𝐿𝐵))
12553, 124elind 3760 . . . . . . . . 9 (𝜑𝐵 ∈ ((𝐴𝐿𝐵) ∩ (𝑅𝐿𝐵)))
1265, 7, 8, 9, 14, 11, 121tglinerflx1 25328 . . . . . . . . 9 (𝜑𝑅 ∈ (𝑅𝐿𝐵))
1275, 6, 7, 8, 9, 13, 122, 125, 59, 126, 12, 121, 44ragperp 25412 . . . . . . . 8 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑅𝐿𝐵))
128127adantr 480 . . . . . . 7 ((𝜑𝑋 = 𝐴) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑅𝐿𝐵))
1295, 6, 7, 8, 62, 120, 123, 128perpcom 25408 . . . . . 6 ((𝜑𝑋 = 𝐴) → (𝑅𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝐵))
13057, 2, 58, 60, 61, 119, 129reu2eqd 3370 . . . . 5 ((𝜑𝑋 = 𝐴) → 𝐴 = 𝐵)
13155, 130mtand 689 . . . 4 (𝜑 → ¬ 𝑋 = 𝐴)
132131neqned 2789 . . 3 (𝜑𝑋𝐴)
133 mideulem2.7 . . 3 (𝜑𝑀𝑃)
134132necomd 2837 . . . 4 (𝜑𝐴𝑋)
135 eqid 2610 . . . . 5 (𝑆𝐴) = (𝑆𝐴)
136 eqid 2610 . . . . 5 (𝑆𝑀) = (𝑆𝑀)
1375, 6, 7, 8, 27, 9, 10, 135, 17mircl 25356 . . . . 5 (𝜑 → ((𝑆𝐴)‘𝑂) ∈ 𝑃)
138 mideulem2.4 . . . . 5 (𝜑𝑍𝑃)
139 mideulem2.5 . . . . 5 (𝜑𝑋 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑍))
14083orcd 406 . . . . . . . . 9 (𝜑 → (𝑋 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
1415, 8, 7, 9, 10, 11, 54, 140colcom 25253 . . . . . . . 8 (𝜑 → (𝑋 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴))
1425, 8, 7, 9, 11, 10, 54, 141colrot1 25254 . . . . . . 7 (𝜑 → (𝐵 ∈ (𝐴𝐿𝑋) ∨ 𝐴 = 𝑋))
1435, 6, 7, 8, 27, 9, 11, 10, 17, 54, 96, 84, 142ragcol 25394 . . . . . 6 (𝜑 → ⟨“𝑋𝐴𝑂”⟩ ∈ (∟G‘𝐺))
1445, 6, 7, 8, 27, 9, 54, 10, 17israg 25392 . . . . . 6 (𝜑 → (⟨“𝑋𝐴𝑂”⟩ ∈ (∟G‘𝐺) ↔ (𝑋 𝑂) = (𝑋 ((𝑆𝐴)‘𝑂))))
145143, 144mpbid 221 . . . . 5 (𝜑 → (𝑋 𝑂) = (𝑋 ((𝑆𝐴)‘𝑂)))
146 mideulem2.6 . . . . . 6 (𝜑 → (𝑋 𝑍) = (𝑋 𝑅))
147146eqcomd 2616 . . . . 5 (𝜑 → (𝑋 𝑅) = (𝑋 𝑍))
148 eqidd 2611 . . . . 5 (𝜑 → ((𝑆𝐴)‘𝑂) = ((𝑆𝐴)‘𝑂))
149 mideulem2.8 . . . . . . . 8 (𝜑𝑅 = ((𝑆𝑀)‘𝑍))
150149eqcomd 2616 . . . . . . 7 (𝜑 → ((𝑆𝑀)‘𝑍) = 𝑅)
1515, 6, 7, 8, 27, 9, 133, 136, 138, 150mircom 25358 . . . . . 6 (𝜑 → ((𝑆𝑀)‘𝑅) = 𝑍)
152151eqcomd 2616 . . . . 5 (𝜑𝑍 = ((𝑆𝑀)‘𝑅))
1535, 6, 7, 8, 27, 9, 135, 136, 17, 137, 54, 14, 138, 10, 133, 79, 139, 145, 147, 148, 152krippen 25386 . . . 4 (𝜑𝑋 ∈ (𝐴𝐼𝑀))
1545, 7, 8, 9, 10, 54, 133, 134, 153btwnlng3 25316 . . 3 (𝜑𝑀 ∈ (𝐴𝐿𝑋))
1555, 7, 8, 9, 10, 11, 12, 54, 132, 83, 133, 154tglineeltr 25326 . 2 (𝜑𝑀 ∈ (𝐴𝐿𝐵))
1565, 6, 7, 8, 9, 13, 122, 127perpcom 25408 . 2 (𝜑 → (𝑅𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝐵))
157 nelne2 2879 . . . . . 6 ((𝑀 ∈ (𝐴𝐿𝐵) ∧ ¬ 𝑅 ∈ (𝐴𝐿𝐵)) → 𝑀𝑅)
158155, 51, 157syl2anc 691 . . . . 5 (𝜑𝑀𝑅)
159158necomd 2837 . . . 4 (𝜑𝑅𝑀)
1605, 7, 8, 9, 14, 133, 159tgelrnln 25325 . . 3 (𝜑 → (𝑅𝐿𝑀) ∈ ran 𝐿)
1615, 7, 8, 9, 14, 133, 159tglinerflx2 25329 . . . . 5 (𝜑𝑀 ∈ (𝑅𝐿𝑀))
162155, 161elind 3760 . . . 4 (𝜑𝑀 ∈ ((𝐴𝐿𝐵) ∩ (𝑅𝐿𝑀)))
1635, 7, 8, 9, 14, 133, 159tglinerflx1 25328 . . . 4 (𝜑𝑅 ∈ (𝑅𝐿𝑀))
164 simpr 476 . . . . . . . 8 ((𝜑𝑀 = 𝑋) → 𝑀 = 𝑋)
1659adantr 480 . . . . . . . . 9 ((𝜑𝑀 = 𝑋) → 𝐺 ∈ TarskiG)
166133adantr 480 . . . . . . . . 9 ((𝜑𝑀 = 𝑋) → 𝑀𝑃)
16710adantr 480 . . . . . . . . 9 ((𝜑𝑀 = 𝑋) → 𝐴𝑃)
16817adantr 480 . . . . . . . . 9 ((𝜑𝑀 = 𝑋) → 𝑂𝑃)
169137adantr 480 . . . . . . . . . . 11 ((𝜑𝑀 = 𝑋) → ((𝑆𝐴)‘𝑂) ∈ 𝑃)
170145adantr 480 . . . . . . . . . . . 12 ((𝜑𝑀 = 𝑋) → (𝑋 𝑂) = (𝑋 ((𝑆𝐴)‘𝑂)))
171164oveq1d 6564 . . . . . . . . . . . 12 ((𝜑𝑀 = 𝑋) → (𝑀 𝑂) = (𝑋 𝑂))
172164oveq1d 6564 . . . . . . . . . . . 12 ((𝜑𝑀 = 𝑋) → (𝑀 ((𝑆𝐴)‘𝑂)) = (𝑋 ((𝑆𝐴)‘𝑂)))
173170, 171, 1723eqtr4rd 2655 . . . . . . . . . . 11 ((𝜑𝑀 = 𝑋) → (𝑀 ((𝑆𝐴)‘𝑂)) = (𝑀 𝑂))
174138adantr 480 . . . . . . . . . . . 12 ((𝜑𝑀 = 𝑋) → 𝑍𝑃)
17514adantr 480 . . . . . . . . . . . 12 ((𝜑𝑀 = 𝑋) → 𝑅𝑃)
176149adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑀 = 𝑋) → 𝑅 = ((𝑆𝑀)‘𝑍))
177176oveq2d 6565 . . . . . . . . . . . . . . 15 ((𝜑𝑀 = 𝑋) → (𝑀 𝑅) = (𝑀 ((𝑆𝑀)‘𝑍)))
1785, 6, 7, 8, 27, 165, 166, 136, 174mircgr 25352 . . . . . . . . . . . . . . 15 ((𝜑𝑀 = 𝑋) → (𝑀 ((𝑆𝑀)‘𝑍)) = (𝑀 𝑍))
179177, 178eqtrd 2644 . . . . . . . . . . . . . 14 ((𝜑𝑀 = 𝑋) → (𝑀 𝑅) = (𝑀 𝑍))
1805, 6, 7, 165, 166, 175, 166, 174, 179tgcgrcomlr 25175 . . . . . . . . . . . . 13 ((𝜑𝑀 = 𝑋) → (𝑅 𝑀) = (𝑍 𝑀))
18183adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑀 = 𝑋) → 𝑋 ∈ (𝐴𝐿𝐵))
182164, 181eqeltrd 2688 . . . . . . . . . . . . . . 15 ((𝜑𝑀 = 𝑋) → 𝑀 ∈ (𝐴𝐿𝐵))
18351adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑀 = 𝑋) → ¬ 𝑅 ∈ (𝐴𝐿𝐵))
184182, 183, 157syl2anc 691 . . . . . . . . . . . . . 14 ((𝜑𝑀 = 𝑋) → 𝑀𝑅)
185184necomd 2837 . . . . . . . . . . . . 13 ((𝜑𝑀 = 𝑋) → 𝑅𝑀)
1865, 6, 7, 165, 175, 166, 174, 166, 180, 185tgcgrneq 25178 . . . . . . . . . . . 12 ((𝜑𝑀 = 𝑋) → 𝑍𝑀)
1875, 6, 7, 8, 27, 9, 133, 136, 138mirbtwn 25353 . . . . . . . . . . . . . . 15 (𝜑𝑀 ∈ (((𝑆𝑀)‘𝑍)𝐼𝑍))
188149oveq1d 6564 . . . . . . . . . . . . . . 15 (𝜑 → (𝑅𝐼𝑍) = (((𝑆𝑀)‘𝑍)𝐼𝑍))
189187, 188eleqtrrd 2691 . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ (𝑅𝐼𝑍))
190189adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑀 = 𝑋) → 𝑀 ∈ (𝑅𝐼𝑍))
1915, 6, 7, 165, 175, 166, 174, 190tgbtwncom 25183 . . . . . . . . . . . 12 ((𝜑𝑀 = 𝑋) → 𝑀 ∈ (𝑍𝐼𝑅))
192139adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑀 = 𝑋) → 𝑋 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑍))
193164, 192eqeltrd 2688 . . . . . . . . . . . . 13 ((𝜑𝑀 = 𝑋) → 𝑀 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑍))
1945, 6, 7, 165, 169, 166, 174, 193tgbtwncom 25183 . . . . . . . . . . . 12 ((𝜑𝑀 = 𝑋) → 𝑀 ∈ (𝑍𝐼((𝑆𝐴)‘𝑂)))
19578adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑀 = 𝑋) → 𝑋 ∈ (𝑅𝐼𝑂))
196164, 195eqeltrd 2688 . . . . . . . . . . . 12 ((𝜑𝑀 = 𝑋) → 𝑀 ∈ (𝑅𝐼𝑂))
1975, 7, 165, 174, 166, 175, 169, 168, 186, 185, 191, 194, 196tgbtwnconn22 25274 . . . . . . . . . . 11 ((𝜑𝑀 = 𝑋) → 𝑀 ∈ (((𝑆𝐴)‘𝑂)𝐼𝑂))
1985, 6, 7, 8, 27, 165, 166, 136, 168, 169, 173, 197ismir 25354 . . . . . . . . . 10 ((𝜑𝑀 = 𝑋) → ((𝑆𝐴)‘𝑂) = ((𝑆𝑀)‘𝑂))
199198eqcomd 2616 . . . . . . . . 9 ((𝜑𝑀 = 𝑋) → ((𝑆𝑀)‘𝑂) = ((𝑆𝐴)‘𝑂))
2005, 6, 7, 8, 27, 165, 166, 167, 168, 199miduniq1 25381 . . . . . . . 8 ((𝜑𝑀 = 𝑋) → 𝑀 = 𝐴)
201164, 200eqtr3d 2646 . . . . . . 7 ((𝜑𝑀 = 𝑋) → 𝑋 = 𝐴)
202131, 201mtand 689 . . . . . 6 (𝜑 → ¬ 𝑀 = 𝑋)
203202neqned 2789 . . . . 5 (𝜑𝑀𝑋)
204203necomd 2837 . . . 4 (𝜑𝑋𝑀)
205151oveq2d 6565 . . . . . 6 (𝜑 → (𝑋 ((𝑆𝑀)‘𝑅)) = (𝑋 𝑍))
206205, 146eqtr2d 2645 . . . . 5 (𝜑 → (𝑋 𝑅) = (𝑋 ((𝑆𝑀)‘𝑅)))
2075, 6, 7, 8, 27, 9, 54, 133, 14israg 25392 . . . . 5 (𝜑 → (⟨“𝑋𝑀𝑅”⟩ ∈ (∟G‘𝐺) ↔ (𝑋 𝑅) = (𝑋 ((𝑆𝑀)‘𝑅))))
208206, 207mpbird 246 . . . 4 (𝜑 → ⟨“𝑋𝑀𝑅”⟩ ∈ (∟G‘𝐺))
2095, 6, 7, 8, 9, 13, 160, 162, 83, 163, 204, 159, 208ragperp 25412 . . 3 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑅𝐿𝑀))
2105, 6, 7, 8, 9, 13, 160, 209perpcom 25408 . 2 (𝜑 → (𝑅𝐿𝑀)(⟂G‘𝐺)(𝐴𝐿𝐵))
2112, 4, 52, 53, 155, 156, 210reu2eqd 3370 1 (𝜑𝐵 = 𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  ∃!wreu 2898   class class class wbr 4583  ran crn 5039  cfv 5804  (class class class)co 6549  ⟨“cs3 13438  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  pInvGcmir 25347  ∟Gcrag 25388  ⟂Gcperpg 25390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206  df-leg 25278  df-mir 25348  df-rag 25389  df-perpg 25391
This theorem is referenced by:  opphllem  25427
  Copyright terms: Public domain W3C validator