MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  foot Structured version   Visualization version   GIF version

Theorem foot 25414
Description: From a point 𝐶 outside of a line 𝐴, there exists a unique point 𝑥 on 𝐴 such that (𝐶𝐿𝑥) is perpendicular to 𝐴. That point is called the foot from 𝐶 on 𝐴. Theorem 8.18 of [Schwabhauser] p. 60. (Contributed by Thierry Arnoux, 19-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
foot.x (𝜑𝐶𝑃)
foot.y (𝜑 → ¬ 𝐶𝐴)
Assertion
Ref Expression
foot (𝜑 → ∃!𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝜑,𝑥   𝑥,𝐶   𝑥,𝐼   𝑥,   𝑥,𝐿   𝑥,𝑃

Proof of Theorem foot
Dummy variables 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . 3 𝑃 = (Base‘𝐺)
2 isperp.d . . 3 = (dist‘𝐺)
3 isperp.i . . 3 𝐼 = (Itv‘𝐺)
4 isperp.l . . 3 𝐿 = (LineG‘𝐺)
5 isperp.g . . 3 (𝜑𝐺 ∈ TarskiG)
6 isperp.a . . 3 (𝜑𝐴 ∈ ran 𝐿)
7 foot.x . . 3 (𝜑𝐶𝑃)
8 foot.y . . 3 (𝜑 → ¬ 𝐶𝐴)
91, 2, 3, 4, 5, 6, 7, 8footex 25413 . 2 (𝜑 → ∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
10 eqid 2610 . . . . . 6 (pInvG‘𝐺) = (pInvG‘𝐺)
115ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐺 ∈ TarskiG)
127ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶𝑃)
135adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝐺 ∈ TarskiG)
146adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝐴 ∈ ran 𝐿)
15 simprl 790 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑥𝐴)
161, 4, 3, 13, 14, 15tglnpt 25244 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑥𝑃)
1716adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑥𝑃)
18 simprr 792 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑧𝐴)
191, 4, 3, 13, 14, 18tglnpt 25244 . . . . . . 7 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑧𝑃)
2019adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑧𝑃)
218adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → ¬ 𝐶𝐴)
22 nelne2 2879 . . . . . . . . . . 11 ((𝑥𝐴 ∧ ¬ 𝐶𝐴) → 𝑥𝐶)
2315, 21, 22syl2anc 691 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑥𝐶)
2423necomd 2837 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝐶𝑥)
2524adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶𝑥)
261, 3, 4, 11, 12, 17, 25tglinerflx1 25328 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ∈ (𝐶𝐿𝑥))
2718adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑧𝐴)
28 simprl 790 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
297adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝐶𝑃)
301, 3, 4, 13, 29, 16, 24tgelrnln 25325 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → (𝐶𝐿𝑥) ∈ ran 𝐿)
311, 3, 4, 13, 29, 16, 24tglinerflx2 25329 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑥 ∈ (𝐶𝐿𝑥))
3231, 15elind 3760 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑥 ∈ ((𝐶𝐿𝑥) ∩ 𝐴))
331, 2, 3, 4, 13, 30, 14, 32isperp2 25410 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
3433adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
3528, 34mpbid 221 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺))
36 id 22 . . . . . . . . . 10 (𝑢 = 𝐶𝑢 = 𝐶)
37 eqidd 2611 . . . . . . . . . 10 (𝑢 = 𝐶𝑥 = 𝑥)
38 eqidd 2611 . . . . . . . . . 10 (𝑢 = 𝐶𝑣 = 𝑣)
3936, 37, 38s3eqd 13460 . . . . . . . . 9 (𝑢 = 𝐶 → ⟨“𝑢𝑥𝑣”⟩ = ⟨“𝐶𝑥𝑣”⟩)
4039eleq1d 2672 . . . . . . . 8 (𝑢 = 𝐶 → (⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐶𝑥𝑣”⟩ ∈ (∟G‘𝐺)))
41 eqidd 2611 . . . . . . . . . 10 (𝑣 = 𝑧𝐶 = 𝐶)
42 eqidd 2611 . . . . . . . . . 10 (𝑣 = 𝑧𝑥 = 𝑥)
43 id 22 . . . . . . . . . 10 (𝑣 = 𝑧𝑣 = 𝑧)
4441, 42, 43s3eqd 13460 . . . . . . . . 9 (𝑣 = 𝑧 → ⟨“𝐶𝑥𝑣”⟩ = ⟨“𝐶𝑥𝑧”⟩)
4544eleq1d 2672 . . . . . . . 8 (𝑣 = 𝑧 → (⟨“𝐶𝑥𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐶𝑥𝑧”⟩ ∈ (∟G‘𝐺)))
4640, 45rspc2va 3294 . . . . . . 7 (((𝐶 ∈ (𝐶𝐿𝑥) ∧ 𝑧𝐴) ∧ ∀𝑢 ∈ (𝐶𝐿𝑥)∀𝑣𝐴 ⟨“𝑢𝑥𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝐶𝑥𝑧”⟩ ∈ (∟G‘𝐺))
4726, 27, 35, 46syl21anc 1317 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ⟨“𝐶𝑥𝑧”⟩ ∈ (∟G‘𝐺))
48 nelne2 2879 . . . . . . . . . . 11 ((𝑧𝐴 ∧ ¬ 𝐶𝐴) → 𝑧𝐶)
4918, 21, 48syl2anc 691 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑧𝐶)
5049necomd 2837 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝐶𝑧)
5150adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶𝑧)
521, 3, 4, 11, 12, 20, 51tglinerflx1 25328 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝐶 ∈ (𝐶𝐿𝑧))
5315adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑥𝐴)
54 simprr 792 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)
551, 3, 4, 13, 29, 19, 50tgelrnln 25325 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → (𝐶𝐿𝑧) ∈ ran 𝐿)
561, 3, 4, 13, 29, 19, 50tglinerflx2 25329 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑧 ∈ (𝐶𝐿𝑧))
5756, 18elind 3760 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → 𝑧 ∈ ((𝐶𝐿𝑧) ∩ 𝐴))
581, 2, 3, 4, 13, 55, 14, 57isperp2 25410 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → ((𝐶𝐿𝑧)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣𝐴 ⟨“𝑢𝑧𝑣”⟩ ∈ (∟G‘𝐺)))
5958adantr 480 . . . . . . . 8 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ((𝐶𝐿𝑧)(⟂G‘𝐺)𝐴 ↔ ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣𝐴 ⟨“𝑢𝑧𝑣”⟩ ∈ (∟G‘𝐺)))
6054, 59mpbid 221 . . . . . . 7 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣𝐴 ⟨“𝑢𝑧𝑣”⟩ ∈ (∟G‘𝐺))
61 eqidd 2611 . . . . . . . . . 10 (𝑢 = 𝐶𝑧 = 𝑧)
6236, 61, 38s3eqd 13460 . . . . . . . . 9 (𝑢 = 𝐶 → ⟨“𝑢𝑧𝑣”⟩ = ⟨“𝐶𝑧𝑣”⟩)
6362eleq1d 2672 . . . . . . . 8 (𝑢 = 𝐶 → (⟨“𝑢𝑧𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐶𝑧𝑣”⟩ ∈ (∟G‘𝐺)))
64 eqidd 2611 . . . . . . . . . 10 (𝑣 = 𝑥𝐶 = 𝐶)
65 eqidd 2611 . . . . . . . . . 10 (𝑣 = 𝑥𝑧 = 𝑧)
66 id 22 . . . . . . . . . 10 (𝑣 = 𝑥𝑣 = 𝑥)
6764, 65, 66s3eqd 13460 . . . . . . . . 9 (𝑣 = 𝑥 → ⟨“𝐶𝑧𝑣”⟩ = ⟨“𝐶𝑧𝑥”⟩)
6867eleq1d 2672 . . . . . . . 8 (𝑣 = 𝑥 → (⟨“𝐶𝑧𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝐶𝑧𝑥”⟩ ∈ (∟G‘𝐺)))
6963, 68rspc2va 3294 . . . . . . 7 (((𝐶 ∈ (𝐶𝐿𝑧) ∧ 𝑥𝐴) ∧ ∀𝑢 ∈ (𝐶𝐿𝑧)∀𝑣𝐴 ⟨“𝑢𝑧𝑣”⟩ ∈ (∟G‘𝐺)) → ⟨“𝐶𝑧𝑥”⟩ ∈ (∟G‘𝐺))
7052, 53, 60, 69syl21anc 1317 . . . . . 6 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → ⟨“𝐶𝑧𝑥”⟩ ∈ (∟G‘𝐺))
711, 2, 3, 4, 10, 11, 12, 17, 20, 47, 70ragflat 25399 . . . . 5 (((𝜑 ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴)) → 𝑥 = 𝑧)
7271ex 449 . . . 4 ((𝜑 ∧ (𝑥𝐴𝑧𝐴)) → (((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) → 𝑥 = 𝑧))
7372ralrimivva 2954 . . 3 (𝜑 → ∀𝑥𝐴𝑧𝐴 (((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) → 𝑥 = 𝑧))
74 oveq2 6557 . . . . 5 (𝑥 = 𝑧 → (𝐶𝐿𝑥) = (𝐶𝐿𝑧))
7574breq1d 4593 . . . 4 (𝑥 = 𝑧 → ((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴))
7675rmo4 3366 . . 3 (∃*𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ ∀𝑥𝐴𝑧𝐴 (((𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ (𝐶𝐿𝑧)(⟂G‘𝐺)𝐴) → 𝑥 = 𝑧))
7773, 76sylibr 223 . 2 (𝜑 → ∃*𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
78 reu5 3136 . 2 (∃!𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ↔ (∃𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴 ∧ ∃*𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴))
799, 77, 78sylanbrc 695 1 (𝜑 → ∃!𝑥𝐴 (𝐶𝐿𝑥)(⟂G‘𝐺)𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  ∃!wreu 2898  ∃*wrmo 2899   class class class wbr 4583  ran crn 5039  cfv 5804  (class class class)co 6549  ⟨“cs3 13438  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  Itvcitv 25135  LineGclng 25136  pInvGcmir 25347  ∟Gcrag 25388  ⟂Gcperpg 25390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkg 25152  df-cgrg 25206  df-leg 25278  df-mir 25348  df-rag 25389  df-perpg 25391
This theorem is referenced by:  footeq  25416  mideulem2  25426  lmieu  25476
  Copyright terms: Public domain W3C validator