Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tglineelsb2 | Structured version Visualization version GIF version |
Description: If 𝑆 lies on PQ , then PQ = PS . Theorem 6.16 of [Schwabhauser] p. 45. (Contributed by Thierry Arnoux, 17-May-2019.) |
Ref | Expression |
---|---|
tglineelsb2.p | ⊢ 𝐵 = (Base‘𝐺) |
tglineelsb2.i | ⊢ 𝐼 = (Itv‘𝐺) |
tglineelsb2.l | ⊢ 𝐿 = (LineG‘𝐺) |
tglineelsb2.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
tglineelsb2.1 | ⊢ (𝜑 → 𝑃 ∈ 𝐵) |
tglineelsb2.2 | ⊢ (𝜑 → 𝑄 ∈ 𝐵) |
tglineelsb2.4 | ⊢ (𝜑 → 𝑃 ≠ 𝑄) |
tglineelsb2.3 | ⊢ (𝜑 → 𝑆 ∈ 𝐵) |
tglineelsb2.5 | ⊢ (𝜑 → 𝑆 ≠ 𝑃) |
tglineelsb2.6 | ⊢ (𝜑 → 𝑆 ∈ (𝑃𝐿𝑄)) |
Ref | Expression |
---|---|
tglineelsb2 | ⊢ (𝜑 → (𝑃𝐿𝑄) = (𝑃𝐿𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tglineelsb2.p | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
2 | tglineelsb2.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
3 | tglineelsb2.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
4 | tglineelsb2.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝐺 ∈ TarskiG) |
6 | tglineelsb2.1 | . . . . 5 ⊢ (𝜑 → 𝑃 ∈ 𝐵) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑃 ∈ 𝐵) |
8 | tglineelsb2.3 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ 𝐵) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑆 ∈ 𝐵) |
10 | tglineelsb2.5 | . . . . . 6 ⊢ (𝜑 → 𝑆 ≠ 𝑃) | |
11 | 10 | necomd 2837 | . . . . 5 ⊢ (𝜑 → 𝑃 ≠ 𝑆) |
12 | 11 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑃 ≠ 𝑆) |
13 | tglineelsb2.2 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝐵) | |
14 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄 ∈ 𝐵) |
15 | tglineelsb2.4 | . . . . . 6 ⊢ (𝜑 → 𝑃 ≠ 𝑄) | |
16 | 15 | necomd 2837 | . . . . 5 ⊢ (𝜑 → 𝑄 ≠ 𝑃) |
17 | 16 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄 ≠ 𝑃) |
18 | tglineelsb2.6 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ (𝑃𝐿𝑄)) | |
19 | 18 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑆 ∈ (𝑃𝐿𝑄)) |
20 | 1, 2, 3, 5, 14, 7, 9, 17, 19 | lncom 25317 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑆 ∈ (𝑄𝐿𝑃)) |
21 | 1, 2, 3, 5, 7, 9, 14, 12, 20, 17 | lnrot1 25318 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑄 ∈ (𝑃𝐿𝑆)) |
22 | 1, 3, 2, 4, 6, 13, 15 | tglnssp 25247 | . . . . 5 ⊢ (𝜑 → (𝑃𝐿𝑄) ⊆ 𝐵) |
23 | 22 | sselda 3568 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ 𝐵) |
24 | simpr 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑃𝐿𝑄)) | |
25 | 1, 2, 3, 5, 7, 9, 12, 14, 17, 21, 23, 24 | tglineeltr 25326 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑄)) → 𝑥 ∈ (𝑃𝐿𝑆)) |
26 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝐺 ∈ TarskiG) |
27 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑃 ∈ 𝐵) |
28 | 13 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑄 ∈ 𝐵) |
29 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑃 ≠ 𝑄) |
30 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑆 ∈ 𝐵) |
31 | 10 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑆 ≠ 𝑃) |
32 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑆 ∈ (𝑃𝐿𝑄)) |
33 | 1, 3, 2, 4, 6, 8, 11 | tglnssp 25247 | . . . . 5 ⊢ (𝜑 → (𝑃𝐿𝑆) ⊆ 𝐵) |
34 | 33 | sselda 3568 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑥 ∈ 𝐵) |
35 | simpr 476 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑥 ∈ (𝑃𝐿𝑆)) | |
36 | 1, 2, 3, 26, 27, 28, 29, 30, 31, 32, 34, 35 | tglineeltr 25326 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝑃𝐿𝑆)) → 𝑥 ∈ (𝑃𝐿𝑄)) |
37 | 25, 36 | impbida 873 | . 2 ⊢ (𝜑 → (𝑥 ∈ (𝑃𝐿𝑄) ↔ 𝑥 ∈ (𝑃𝐿𝑆))) |
38 | 37 | eqrdv 2608 | 1 ⊢ (𝜑 → (𝑃𝐿𝑄) = (𝑃𝐿𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ≠ wne 2780 ‘cfv 5804 (class class class)co 6549 Basecbs 15695 TarskiGcstrkg 25129 Itvcitv 25135 LineGclng 25136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-xnn0 11241 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-concat 13156 df-s1 13157 df-s2 13444 df-s3 13445 df-trkgc 25147 df-trkgb 25148 df-trkgcb 25149 df-trkg 25152 df-cgrg 25206 |
This theorem is referenced by: tglinethru 25331 ncolncol 25341 coltr3 25343 hlperpnel 25417 colperpexlem3 25424 mideulem2 25426 lmieu 25476 lmiisolem 25488 |
Copyright terms: Public domain | W3C validator |