Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindimp2lem4 Structured version   Visualization version   GIF version

Theorem lindslinindimp2lem4 42044
Description: Lemma 4 for lindslinindsimp2 42046. (Contributed by AV, 25-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
lindslinind.y 𝑌 = ((invg𝑅)‘(𝑓𝑥))
lindslinind.g 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
Assertion
Ref Expression
lindslinindimp2lem4 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))
Distinct variable groups:   𝐵,𝑓,𝑦   𝑓,𝑀,𝑦   𝑅,𝑓,𝑥   𝑆,𝑓,𝑥,𝑦   𝑦,𝑉   𝑓,𝑍,𝑦   0 ,𝑓,𝑥,𝑦   𝑦,𝐺
Allowed substitution hints:   𝐵(𝑥)   𝑅(𝑦)   𝐺(𝑥,𝑓)   𝑀(𝑥)   𝑉(𝑥,𝑓)   𝑌(𝑥,𝑦,𝑓)   𝑍(𝑥)

Proof of Theorem lindslinindimp2lem4
StepHypRef Expression
1 simpr 476 . . . . . . . . . . . . 13 ((𝑆𝑉𝑀 ∈ LMod) → 𝑀 ∈ LMod)
21adantr 480 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑀 ∈ LMod)
3 simprl 790 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑆 ⊆ (Base‘𝑀))
4 elpwg 4116 . . . . . . . . . . . . . 14 (𝑆𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
54ad2antrr 758 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
63, 5mpbird 246 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑆 ∈ 𝒫 (Base‘𝑀))
7 simpr 476 . . . . . . . . . . . . 13 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → 𝑥𝑆)
87adantl 481 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → 𝑥𝑆)
92, 6, 83jca 1235 . . . . . . . . . . 11 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑆))
109adantl 481 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑆))
11 simpl 472 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ))
12 lindslinind.g . . . . . . . . . . 11 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))
1312a1i 11 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥})))
14 eqid 2610 . . . . . . . . . . 11 (Base‘𝑀) = (Base‘𝑀)
15 lindslinind.r . . . . . . . . . . 11 𝑅 = (Scalar‘𝑀)
16 lindslinind.b . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
17 eqid 2610 . . . . . . . . . . 11 ( ·𝑠𝑀) = ( ·𝑠𝑀)
18 eqid 2610 . . . . . . . . . . 11 (+g𝑀) = (+g𝑀)
19 lindslinind.0 . . . . . . . . . . 11 0 = (0g𝑅)
2014, 15, 16, 17, 18, 19lincdifsn 42007 . . . . . . . . . 10 (((𝑀 ∈ LMod ∧ 𝑆 ∈ 𝒫 (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ 𝐺 = (𝑓 ↾ (𝑆 ∖ {𝑥}))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)))
2110, 11, 13, 20syl3anc 1318 . . . . . . . . 9 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑓( linC ‘𝑀)𝑆) = ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)))
2221eqeq1d 2612 . . . . . . . 8 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)) = 𝑍))
23 lmodgrp 18693 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
2423adantl 481 . . . . . . . . . 10 ((𝑆𝑉𝑀 ∈ LMod) → 𝑀 ∈ Grp)
2524ad2antrl 760 . . . . . . . . 9 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑀 ∈ Grp)
261ad2antrl 760 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑀 ∈ LMod)
27 elmapi 7765 . . . . . . . . . . . . 13 (𝑓 ∈ (𝐵𝑚 𝑆) → 𝑓:𝑆𝐵)
28 ffvelrn 6265 . . . . . . . . . . . . . . . 16 ((𝑓:𝑆𝐵𝑥𝑆) → (𝑓𝑥) ∈ 𝐵)
2928expcom 450 . . . . . . . . . . . . . . 15 (𝑥𝑆 → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
3029ad2antll 761 . . . . . . . . . . . . . 14 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓:𝑆𝐵 → (𝑓𝑥) ∈ 𝐵))
3130com12 32 . . . . . . . . . . . . 13 (𝑓:𝑆𝐵 → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
3227, 31syl 17 . . . . . . . . . . . 12 (𝑓 ∈ (𝐵𝑚 𝑆) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
3332adantr 480 . . . . . . . . . . 11 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
3433imp 444 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑓𝑥) ∈ 𝐵)
35 ssel2 3563 . . . . . . . . . . 11 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → 𝑥 ∈ (Base‘𝑀))
3635ad2antll 761 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑥 ∈ (Base‘𝑀))
3714, 15, 17, 16lmodvscl 18703 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ (𝑓𝑥) ∈ 𝐵𝑥 ∈ (Base‘𝑀)) → ((𝑓𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
3826, 34, 36, 37syl3anc 1318 . . . . . . . . 9 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀))
39 difexg 4735 . . . . . . . . . . . . 13 (𝑆𝑉 → (𝑆 ∖ {𝑥}) ∈ V)
4039ad2antrr 758 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ∈ V)
41 ssdifss 3703 . . . . . . . . . . . . 13 (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
4241ad2antrl 760 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀))
4340, 42jca 553 . . . . . . . . . . 11 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
4443adantl 481 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
45 simprl 790 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑆𝑉𝑀 ∈ LMod))
46 simpl 472 . . . . . . . . . . . . 13 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) → 𝑆 ⊆ (Base‘𝑀))
4746ad2antll 761 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑆 ⊆ (Base‘𝑀))
487ad2antll 761 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑥𝑆)
49 simpl 472 . . . . . . . . . . . . 13 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) → 𝑓 ∈ (𝐵𝑚 𝑆))
5049adantr 480 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝑓 ∈ (𝐵𝑚 𝑆))
51 lindslinind.z . . . . . . . . . . . . 13 𝑍 = (0g𝑀)
52 lindslinind.y . . . . . . . . . . . . 13 𝑌 = ((invg𝑅)‘(𝑓𝑥))
5315, 16, 19, 51, 52, 12lindslinindimp2lem2 42042 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆𝑓 ∈ (𝐵𝑚 𝑆))) → 𝐺 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥})))
5445, 47, 48, 50, 53syl13anc 1320 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥})))
55 simpr 476 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))
5655adantl 481 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))
5715, 16, 19, 51, 52, 12lindslinindimp2lem3 42043 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 )) → 𝐺 finSupp 0 )
5845, 56, 11, 57syl3anc 1318 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 finSupp 0 )
5954, 58jca 553 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝐺 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 ))
6014, 15, 16, 19lincfsuppcl 41996 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ ((𝑆 ∖ {𝑥}) ∈ V ∧ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)) ∧ (𝐺 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥})) ∧ 𝐺 finSupp 0 )) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀))
6126, 44, 59, 60syl3anc 1318 . . . . . . . . 9 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀))
62 eqid 2610 . . . . . . . . . 10 (invg𝑀) = (invg𝑀)
6314, 18, 51, 62grpinvid2 17294 . . . . . . . . 9 ((𝑀 ∈ Grp ∧ ((𝑓𝑥)( ·𝑠𝑀)𝑥) ∈ (Base‘𝑀) ∧ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ∈ (Base‘𝑀)) → (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)) = 𝑍))
6425, 38, 61, 63syl3anc 1318 . . . . . . . 8 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))(+g𝑀)((𝑓𝑥)( ·𝑠𝑀)𝑥)) = 𝑍))
6522, 64bitr4d 270 . . . . . . 7 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 ↔ ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
66 eqcom 2617 . . . . . . . 8 (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) ↔ (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)))
6715fveq2i 6106 . . . . . . . . . . . . . 14 (Base‘𝑅) = (Base‘(Scalar‘𝑀))
6816, 67eqtri 2632 . . . . . . . . . . . . 13 𝐵 = (Base‘(Scalar‘𝑀))
6968oveq1i 6559 . . . . . . . . . . . 12 (𝐵𝑚 (𝑆 ∖ {𝑥})) = ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑥}))
7054, 69syl6eleq 2698 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑥})))
71 elpwg 4116 . . . . . . . . . . . . . 14 ((𝑆 ∖ {𝑥}) ∈ V → ((𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
7240, 71syl 17 . . . . . . . . . . . . 13 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑥}) ⊆ (Base‘𝑀)))
7342, 72mpbird 246 . . . . . . . . . . . 12 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀))
7473adantl 481 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀))
75 lincval 41992 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝐺 ∈ ((Base‘(Scalar‘𝑀)) ↑𝑚 (𝑆 ∖ {𝑥})) ∧ (𝑆 ∖ {𝑥}) ∈ 𝒫 (Base‘𝑀)) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))))
7626, 70, 74, 75syl3anc 1318 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))))
7776eqeq1d 2612 . . . . . . . . 9 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥))))
7812fveq1i 6104 . . . . . . . . . . . . . . . 16 (𝐺𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦)
7978a1i 11 . . . . . . . . . . . . . . 15 ((((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺𝑦) = ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦))
80 fvres 6117 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (𝑆 ∖ {𝑥}) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓𝑦))
8180adantl 481 . . . . . . . . . . . . . . 15 ((((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝑓 ↾ (𝑆 ∖ {𝑥}))‘𝑦) = (𝑓𝑦))
8279, 81eqtrd 2644 . . . . . . . . . . . . . 14 ((((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → (𝐺𝑦) = (𝑓𝑦))
8382oveq1d 6564 . . . . . . . . . . . . 13 ((((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) ∧ 𝑦 ∈ (𝑆 ∖ {𝑥})) → ((𝐺𝑦)( ·𝑠𝑀)𝑦) = ((𝑓𝑦)( ·𝑠𝑀)𝑦))
8483mpteq2dva 4672 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦)) = (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦)))
8584oveq2d 6565 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))))
86 eqid 2610 . . . . . . . . . . . . 13 (invg𝑅) = (invg𝑅)
8728ex 449 . . . . . . . . . . . . . . . . . . 19 (𝑓:𝑆𝐵 → (𝑥𝑆 → (𝑓𝑥) ∈ 𝐵))
8827, 87syl 17 . . . . . . . . . . . . . . . . . 18 (𝑓 ∈ (𝐵𝑚 𝑆) → (𝑥𝑆 → (𝑓𝑥) ∈ 𝐵))
8988com12 32 . . . . . . . . . . . . . . . . 17 (𝑥𝑆 → (𝑓 ∈ (𝐵𝑚 𝑆) → (𝑓𝑥) ∈ 𝐵))
9089ad2antll 761 . . . . . . . . . . . . . . . 16 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓 ∈ (𝐵𝑚 𝑆) → (𝑓𝑥) ∈ 𝐵))
9190com12 32 . . . . . . . . . . . . . . 15 (𝑓 ∈ (𝐵𝑚 𝑆) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
9291adantr 480 . . . . . . . . . . . . . 14 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑓𝑥) ∈ 𝐵))
9392imp 444 . . . . . . . . . . . . 13 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (𝑓𝑥) ∈ 𝐵)
9414, 15, 17, 62, 16, 86, 26, 36, 93lmodvsneg 18730 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥))
9552eqcomi 2619 . . . . . . . . . . . . . 14 ((invg𝑅)‘(𝑓𝑥)) = 𝑌
9695a1i 11 . . . . . . . . . . . . 13 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((invg𝑅)‘(𝑓𝑥)) = 𝑌)
9796oveq1d 6564 . . . . . . . . . . . 12 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (((invg𝑅)‘(𝑓𝑥))( ·𝑠𝑀)𝑥) = (𝑌( ·𝑠𝑀)𝑥))
9894, 97eqtrd 2644 . . . . . . . . . . 11 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝑌( ·𝑠𝑀)𝑥))
9985, 98eqeq12d 2625 . . . . . . . . . 10 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) ↔ (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
10099biimpd 218 . . . . . . . . 9 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝐺𝑦)( ·𝑠𝑀)𝑦))) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
10177, 100sylbid 229 . . . . . . . 8 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) = ((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
10266, 101syl5bi 231 . . . . . . 7 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → (((invg𝑀)‘((𝑓𝑥)( ·𝑠𝑀)𝑥)) = (𝐺( linC ‘𝑀)(𝑆 ∖ {𝑥})) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
10365, 102sylbid 229 . . . . . 6 (((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) ∧ ((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆))) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
104103ex 449 . . . . 5 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))))
105104com23 84 . . . 4 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ) → ((𝑓( linC ‘𝑀)𝑆) = 𝑍 → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))))
1061053impia 1253 . . 3 ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
107106com12 32 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥)))
1081073impia 1253 1 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆) ∧ (𝑓 ∈ (𝐵𝑚 𝑆) ∧ 𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑀 Σg (𝑦 ∈ (𝑆 ∖ {𝑥}) ↦ ((𝑓𝑦)( ·𝑠𝑀)𝑦))) = (𝑌( ·𝑠𝑀)𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  Vcvv 3173  cdif 3537  wss 3540  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  cmpt 4643  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744   finSupp cfsupp 8158  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923   Σg cgsu 15924  Grpcgrp 17245  invgcminusg 17246  LModclmod 18686   linC clinc 41987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-linc 41989
This theorem is referenced by:  lindslinindsimp2lem5  42045
  Copyright terms: Public domain W3C validator