Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lindslinindsimp2 Structured version   Visualization version   GIF version

Theorem lindslinindsimp2 42046
Description: Implication 2 for lindslininds 42047. (Contributed by AV, 26-Apr-2019.) (Revised by AV, 30-Jul-2019.)
Hypotheses
Ref Expression
lindslinind.r 𝑅 = (Scalar‘𝑀)
lindslinind.b 𝐵 = (Base‘𝑅)
lindslinind.0 0 = (0g𝑅)
lindslinind.z 𝑍 = (0g𝑀)
Assertion
Ref Expression
lindslinindsimp2 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
Distinct variable groups:   𝐵,𝑓,𝑠,𝑦   𝑓,𝑀,𝑠,𝑦   𝑅,𝑓,𝑥   𝑆,𝑓,𝑠,𝑥,𝑦   𝑉,𝑠,𝑦   𝑓,𝑍,𝑠,𝑦   0 ,𝑓,𝑠,𝑥,𝑦   𝑦,𝑅   𝑥,𝐵   𝑥,𝑀   𝑅,𝑠   𝑓,𝑉,𝑥   𝑥,𝑍

Proof of Theorem lindslinindsimp2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simprl 790 . . . 4 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → 𝑆 ⊆ (Base‘𝑀))
2 elpwg 4116 . . . . 5 (𝑆𝑉 → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
32ad2antrr 758 . . . 4 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)))
41, 3mpbird 246 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → 𝑆 ∈ 𝒫 (Base‘𝑀))
5 simplr 788 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → 𝑀 ∈ LMod)
6 ssdifss 3703 . . . . . . . . . . 11 (𝑆 ⊆ (Base‘𝑀) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))
76adantl 481 . . . . . . . . . 10 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀))
8 difexg 4735 . . . . . . . . . . . 12 (𝑆𝑉 → (𝑆 ∖ {𝑠}) ∈ V)
98ad2antrr 758 . . . . . . . . . . 11 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑆 ∖ {𝑠}) ∈ V)
10 elpwg 4116 . . . . . . . . . . 11 ((𝑆 ∖ {𝑠}) ∈ V → ((𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)))
119, 10syl 17 . . . . . . . . . 10 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀) ↔ (𝑆 ∖ {𝑠}) ⊆ (Base‘𝑀)))
127, 11mpbird 246 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀))
13 eqid 2610 . . . . . . . . . . . 12 (Base‘𝑀) = (Base‘𝑀)
1413lspeqlco 42022 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → (𝑀 LinCo (𝑆 ∖ {𝑠})) = ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))
1514eleq2d 2673 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))))
1615bicomd 212 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
175, 12, 16syl2anc 691 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
1817notbid 307 . . . . . . 7 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠}))))
19 lindslinind.r . . . . . . . . . . . 12 𝑅 = (Scalar‘𝑀)
20 lindslinind.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑅)
2113, 19, 20lcoval 41995 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
22 lindslinind.0 . . . . . . . . . . . . . . . 16 0 = (0g𝑅)
2322eqcomi 2619 . . . . . . . . . . . . . . 15 (0g𝑅) = 0
2423breq2i 4591 . . . . . . . . . . . . . 14 (𝑔 finSupp (0g𝑅) ↔ 𝑔 finSupp 0 )
2524anbi1i 727 . . . . . . . . . . . . 13 ((𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
2625rexbii 3023 . . . . . . . . . . . 12 (∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
2726anbi2i 726 . . . . . . . . . . 11 (((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp (0g𝑅) ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
2821, 27syl6bb 275 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ (𝑆 ∖ {𝑠}) ∈ 𝒫 (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
295, 12, 28syl2anc 691 . . . . . . . . 9 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
3029notbid 307 . . . . . . . 8 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ ¬ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
31 ianor 508 . . . . . . . . 9 (¬ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ¬ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
32 ralnex 2975 . . . . . . . . . . 11 (∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ¬ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
33 ianor 508 . . . . . . . . . . . 12 (¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
3433ralbii 2963 . . . . . . . . . . 11 (∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠})) ¬ (𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
3532, 34bitr3i 265 . . . . . . . . . 10 (¬ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))
3635orbi2i 540 . . . . . . . . 9 ((¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ¬ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
3731, 36bitri 263 . . . . . . . 8 (¬ ((𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∧ ∃𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(𝑔 finSupp 0 ∧ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
3830, 37syl6bb 275 . . . . . . 7 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (𝑀 LinCo (𝑆 ∖ {𝑠})) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
3918, 38bitrd 267 . . . . . 6 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
40392ralbidv 2972 . . . . 5 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) ↔ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
41 simpllr 795 . . . . . . . . . . 11 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑀 ∈ LMod)
42 eldifi 3694 . . . . . . . . . . . . 13 (𝑦 ∈ (𝐵 ∖ { 0 }) → 𝑦𝐵)
4342adantl 481 . . . . . . . . . . . 12 ((𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })) → 𝑦𝐵)
4443adantl 481 . . . . . . . . . . 11 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑦𝐵)
45 ssel2 3563 . . . . . . . . . . . 12 ((𝑆 ⊆ (Base‘𝑀) ∧ 𝑠𝑆) → 𝑠 ∈ (Base‘𝑀))
4645ad2ant2lr 780 . . . . . . . . . . 11 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → 𝑠 ∈ (Base‘𝑀))
47 eqid 2610 . . . . . . . . . . . 12 ( ·𝑠𝑀) = ( ·𝑠𝑀)
4813, 19, 47, 20lmodvscl 18703 . . . . . . . . . . 11 ((𝑀 ∈ LMod ∧ 𝑦𝐵𝑠 ∈ (Base‘𝑀)) → (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀))
4941, 44, 46, 48syl3anc 1318 . . . . . . . . . 10 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀))
5049notnotd 137 . . . . . . . . 9 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ¬ ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀))
51 nbfal 1486 . . . . . . . . 9 (¬ ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ↔ (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ↔ ⊥))
5250, 51sylib 207 . . . . . . . 8 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → (¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ↔ ⊥))
5352orbi1d 735 . . . . . . 7 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ (𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }))) → ((¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
54532ralbidva 2971 . . . . . 6 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))))))
55 r19.32v 3064 . . . . . . . . 9 (∀𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
5655ralbii 2963 . . . . . . . 8 (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ ∀𝑠𝑆 (⊥ ∨ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
57 r19.32v 3064 . . . . . . . 8 (∀𝑠𝑆 (⊥ ∨ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
5856, 57bitri 263 . . . . . . 7 (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ↔ (⊥ ∨ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))))
59 falim 1489 . . . . . . . . 9 (⊥ → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
60 sneq 4135 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = 𝑥 → {𝑠} = {𝑥})
6160difeq2d 3690 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 𝑥 → (𝑆 ∖ {𝑠}) = (𝑆 ∖ {𝑥}))
6261oveq2d 6565 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑥 → (𝐵𝑚 (𝑆 ∖ {𝑠})) = (𝐵𝑚 (𝑆 ∖ {𝑥})))
63 oveq2 6557 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = 𝑥 → (𝑦( ·𝑠𝑀)𝑠) = (𝑦( ·𝑠𝑀)𝑥))
6461oveq2d 6565 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 = 𝑥 → (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))
6563, 64eqeq12d 2625 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑠 = 𝑥 → ((𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) ↔ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
6665notbid 307 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 = 𝑥 → (¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})) ↔ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
6766orbi2d 734 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = 𝑥 → ((¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ (¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
6862, 67raleqbidv 3129 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = 𝑥 → (∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
6968ralbidv 2969 . . . . . . . . . . . . . . . . . . 19 (𝑠 = 𝑥 → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) ↔ ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥})))))
7069rspcva 3280 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑆 ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))))
71 lindslinind.z . . . . . . . . . . . . . . . . . . . . 21 𝑍 = (0g𝑀)
7219, 20, 22, 71lindslinindsimp2lem5 42045 . . . . . . . . . . . . . . . . . . . 20 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ 𝑥𝑆)) → ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 )))
7372expr 641 . . . . . . . . . . . . . . . . . . 19 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑥𝑆 → ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑓𝑥) = 0 ))))
7473com14 94 . . . . . . . . . . . . . . . . . 18 (∀𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑥}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑥) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑥}))) → (𝑥𝑆 → ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓𝑥) = 0 ))))
7570, 74syl 17 . . . . . . . . . . . . . . . . 17 ((𝑥𝑆 ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → (𝑥𝑆 → ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓𝑥) = 0 ))))
7675ex 449 . . . . . . . . . . . . . . . 16 (𝑥𝑆 → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → (𝑥𝑆 → ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓𝑥) = 0 )))))
7776pm2.43a 52 . . . . . . . . . . . . . . 15 (𝑥𝑆 → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (𝑓𝑥) = 0 ))))
7877com14 94 . . . . . . . . . . . . . 14 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑥𝑆 → (𝑓𝑥) = 0 ))))
7978imp 444 . . . . . . . . . . . . 13 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ((𝑓 ∈ (𝐵𝑚 𝑆) ∧ (𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍)) → (𝑥𝑆 → (𝑓𝑥) = 0 )))
8079expdimp 452 . . . . . . . . . . . 12 (((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ∧ 𝑓 ∈ (𝐵𝑚 𝑆)) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → (𝑥𝑆 → (𝑓𝑥) = 0 )))
8180ralrimdv 2951 . . . . . . . . . . 11 (((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) ∧ 𝑓 ∈ (𝐵𝑚 𝑆)) → ((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
8281ralrimiva 2949 . . . . . . . . . 10 ((((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
8382expcom 450 . . . . . . . . 9 (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠}))) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8459, 83jaoi 393 . . . . . . . 8 ((⊥ ∨ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8584com12 32 . . . . . . 7 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → ((⊥ ∨ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8658, 85syl5bi 231 . . . . . 6 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(⊥ ∨ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8754, 86sylbid 229 . . . . 5 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 })(¬ (𝑦( ·𝑠𝑀)𝑠) ∈ (Base‘𝑀) ∨ ∀𝑔 ∈ (𝐵𝑚 (𝑆 ∖ {𝑠}))(¬ 𝑔 finSupp 0 ∨ ¬ (𝑦( ·𝑠𝑀)𝑠) = (𝑔( linC ‘𝑀)(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8840, 87sylbid 229 . . . 4 (((𝑆𝑉𝑀 ∈ LMod) ∧ 𝑆 ⊆ (Base‘𝑀)) → (∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})) → ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
8988impr 647 . . 3 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))
904, 89jca 553 . 2 (((𝑆𝑉𝑀 ∈ LMod) ∧ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠})))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 )))
9190ex 449 1 ((𝑆𝑉𝑀 ∈ LMod) → ((𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑠𝑆𝑦 ∈ (𝐵 ∖ { 0 }) ¬ (𝑦( ·𝑠𝑀)𝑠) ∈ ((LSpan‘𝑀)‘(𝑆 ∖ {𝑠}))) → (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ∀𝑓 ∈ (𝐵𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥𝑆 (𝑓𝑥) = 0 ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wfal 1480  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cdif 3537  wss 3540  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  𝑚 cmap 7744   finSupp cfsupp 8158  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  LModclmod 18686  LSpanclspn 18792   linC clinc 41987   LinCo clinco 41988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754  df-lsp 18793  df-linc 41989  df-lco 41990
This theorem is referenced by:  lindslininds  42047
  Copyright terms: Public domain W3C validator