Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssdifss | Structured version Visualization version GIF version |
Description: Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.) |
Ref | Expression |
---|---|
ssdifss | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3699 | . 2 ⊢ (𝐴 ∖ 𝐶) ⊆ 𝐴 | |
2 | sstr 3576 | . 2 ⊢ (((𝐴 ∖ 𝐶) ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∖ 𝐶) ⊆ 𝐵) | |
3 | 1, 2 | mpan 702 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∖ 𝐶) ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∖ cdif 3537 ⊆ wss 3540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-v 3175 df-dif 3543 df-in 3547 df-ss 3554 |
This theorem is referenced by: ssdifssd 3710 xrsupss 12011 xrinfmss 12012 rpnnen2lem12 14793 lpval 20753 lpdifsn 20757 islp2 20759 lpcls 20978 mblfinlem3 32618 mblfinlem4 32619 voliunnfl 32623 ssdifcl 36895 sssymdifcl 36896 fourierdlem102 39101 fourierdlem114 39113 lindslinindimp2lem4 42044 lindslinindsimp2lem5 42045 lindslinindsimp2 42046 lincresunit3 42064 |
Copyright terms: Public domain | W3C validator |