Step | Hyp | Ref
| Expression |
1 | | 0z 11265 |
. . . . . . . 8
⊢ 0 ∈
ℤ |
2 | | 0le1 10430 |
. . . . . . . 8
⊢ 0 ≤
1 |
3 | | fveq2 6103 |
. . . . . . . . . . 11
⊢ (𝑥 = 0 → (abs‘𝑥) =
(abs‘0)) |
4 | | abs0 13873 |
. . . . . . . . . . 11
⊢
(abs‘0) = 0 |
5 | 3, 4 | syl6eq 2660 |
. . . . . . . . . 10
⊢ (𝑥 = 0 → (abs‘𝑥) = 0) |
6 | 5 | breq1d 4593 |
. . . . . . . . 9
⊢ (𝑥 = 0 → ((abs‘𝑥) ≤ 1 ↔ 0 ≤
1)) |
7 | | lgsfcl2.z |
. . . . . . . . 9
⊢ 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1} |
8 | 6, 7 | elrab2 3333 |
. . . . . . . 8
⊢ (0 ∈
𝑍 ↔ (0 ∈ ℤ
∧ 0 ≤ 1)) |
9 | 1, 2, 8 | mpbir2an 957 |
. . . . . . 7
⊢ 0 ∈
𝑍 |
10 | | 1z 11284 |
. . . . . . . . 9
⊢ 1 ∈
ℤ |
11 | | 1le1 10534 |
. . . . . . . . 9
⊢ 1 ≤
1 |
12 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → (abs‘𝑥) =
(abs‘1)) |
13 | | abs1 13885 |
. . . . . . . . . . . 12
⊢
(abs‘1) = 1 |
14 | 12, 13 | syl6eq 2660 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (abs‘𝑥) = 1) |
15 | 14 | breq1d 4593 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤
1)) |
16 | 15, 7 | elrab2 3333 |
. . . . . . . . 9
⊢ (1 ∈
𝑍 ↔ (1 ∈ ℤ
∧ 1 ≤ 1)) |
17 | 10, 11, 16 | mpbir2an 957 |
. . . . . . . 8
⊢ 1 ∈
𝑍 |
18 | | neg1z 11290 |
. . . . . . . . 9
⊢ -1 ∈
ℤ |
19 | | fveq2 6103 |
. . . . . . . . . . . 12
⊢ (𝑥 = -1 → (abs‘𝑥) =
(abs‘-1)) |
20 | | ax-1cn 9873 |
. . . . . . . . . . . . . 14
⊢ 1 ∈
ℂ |
21 | 20 | absnegi 13987 |
. . . . . . . . . . . . 13
⊢
(abs‘-1) = (abs‘1) |
22 | 21, 13 | eqtri 2632 |
. . . . . . . . . . . 12
⊢
(abs‘-1) = 1 |
23 | 19, 22 | syl6eq 2660 |
. . . . . . . . . . 11
⊢ (𝑥 = -1 → (abs‘𝑥) = 1) |
24 | 23 | breq1d 4593 |
. . . . . . . . . 10
⊢ (𝑥 = -1 → ((abs‘𝑥) ≤ 1 ↔ 1 ≤
1)) |
25 | 24, 7 | elrab2 3333 |
. . . . . . . . 9
⊢ (-1
∈ 𝑍 ↔ (-1 ∈
ℤ ∧ 1 ≤ 1)) |
26 | 18, 11, 25 | mpbir2an 957 |
. . . . . . . 8
⊢ -1 ∈
𝑍 |
27 | 17, 26 | keepel 4105 |
. . . . . . 7
⊢ if((𝐴 mod 8) ∈ {1, 7}, 1, -1)
∈ 𝑍 |
28 | 9, 27 | keepel 4105 |
. . . . . 6
⊢ if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
∈ 𝑍 |
29 | 28 | a1i 11 |
. . . . 5
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ 𝑛 ∈ ℕ)
∧ 𝑛 ∈ ℙ)
∧ 𝑛 = 2) → if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1))
∈ 𝑍) |
30 | | simpl1 1057 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈
ℤ) |
31 | 30 | ad2antrr 758 |
. . . . . 6
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ 𝑛 ∈ ℕ)
∧ 𝑛 ∈ ℙ)
∧ ¬ 𝑛 = 2) →
𝐴 ∈
ℤ) |
32 | | simplr 788 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ 𝑛 ∈ ℕ)
∧ 𝑛 ∈ ℙ)
∧ ¬ 𝑛 = 2) →
𝑛 ∈
ℙ) |
33 | | simpr 476 |
. . . . . . . 8
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ 𝑛 ∈ ℕ)
∧ 𝑛 ∈ ℙ)
∧ ¬ 𝑛 = 2) →
¬ 𝑛 =
2) |
34 | 33 | neqned 2789 |
. . . . . . 7
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ 𝑛 ∈ ℕ)
∧ 𝑛 ∈ ℙ)
∧ ¬ 𝑛 = 2) →
𝑛 ≠ 2) |
35 | | eldifsn 4260 |
. . . . . . 7
⊢ (𝑛 ∈ (ℙ ∖ {2})
↔ (𝑛 ∈ ℙ
∧ 𝑛 ≠
2)) |
36 | 32, 34, 35 | sylanbrc 695 |
. . . . . 6
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ 𝑛 ∈ ℕ)
∧ 𝑛 ∈ ℙ)
∧ ¬ 𝑛 = 2) →
𝑛 ∈ (ℙ ∖
{2})) |
37 | 7 | lgslem4 24825 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝑛 ∈ (ℙ ∖ {2}))
→ ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) ∈ 𝑍) |
38 | 31, 36, 37 | syl2anc 691 |
. . . . 5
⊢
(((((𝐴 ∈
ℤ ∧ 𝑁 ∈
ℤ ∧ 𝑁 ≠ 0)
∧ 𝑛 ∈ ℕ)
∧ 𝑛 ∈ ℙ)
∧ ¬ 𝑛 = 2) →
((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1) ∈ 𝑍) |
39 | 29, 38 | ifclda 4070 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) ∈ 𝑍) |
40 | | simpr 476 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑛 ∈
ℙ) |
41 | | simpll2 1094 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑁 ∈
ℤ) |
42 | | simpll3 1095 |
. . . . 5
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → 𝑁 ≠ 0) |
43 | | pczcl 15391 |
. . . . 5
⊢ ((𝑛 ∈ ℙ ∧ (𝑁 ∈ ℤ ∧ 𝑁 ≠ 0)) → (𝑛 pCnt 𝑁) ∈
ℕ0) |
44 | 40, 41, 42, 43 | syl12anc 1316 |
. . . 4
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) → (𝑛 pCnt 𝑁) ∈
ℕ0) |
45 | | ssrab2 3650 |
. . . . . . 7
⊢ {𝑥 ∈ ℤ ∣
(abs‘𝑥) ≤ 1}
⊆ ℤ |
46 | 7, 45 | eqsstri 3598 |
. . . . . 6
⊢ 𝑍 ⊆
ℤ |
47 | | zsscn 11262 |
. . . . . 6
⊢ ℤ
⊆ ℂ |
48 | 46, 47 | sstri 3577 |
. . . . 5
⊢ 𝑍 ⊆
ℂ |
49 | 7 | lgslem3 24824 |
. . . . 5
⊢ ((𝑎 ∈ 𝑍 ∧ 𝑏 ∈ 𝑍) → (𝑎 · 𝑏) ∈ 𝑍) |
50 | 48, 49, 17 | expcllem 12733 |
. . . 4
⊢
((if(𝑛 = 2, if(2
∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)),
((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1)) ∈ 𝑍 ∧ (𝑛 pCnt 𝑁) ∈ ℕ0) →
(if(𝑛 = 2, if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) ∈ 𝑍) |
51 | 39, 44, 50 | syl2anc 691 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ 𝑛 ∈ ℙ) →
(if(𝑛 = 2, if(2 ∥
𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)) ∈ 𝑍) |
52 | 17 | a1i 11 |
. . 3
⊢ ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) ∧ ¬
𝑛 ∈ ℙ) → 1
∈ 𝑍) |
53 | 51, 52 | ifclda 4070 |
. 2
⊢ (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) ∧ 𝑛 ∈ ℕ) → if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1) ∈ 𝑍) |
54 | | lgsval.1 |
. 2
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 𝑁)), 1)) |
55 | 53, 54 | fmptd 6292 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → 𝐹:ℕ⟶𝑍) |