Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem4 Structured version   Visualization version   GIF version

Theorem lgslem4 24825
 Description: The function 𝐹 is closed in integers with absolute value less than 1 (namely {-1, 0, 1}, see zabsle1 24821). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
Assertion
Ref Expression
lgslem4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑃(𝑥)   𝑍(𝑥)

Proof of Theorem lgslem4
StepHypRef Expression
1 simpll 786 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 𝐴 ∈ ℤ)
2 oddprm 15353 . . . . . . . . . . 11 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
32ad2antlr 759 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((𝑃 − 1) / 2) ∈ ℕ)
43nnnn0d 11228 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((𝑃 − 1) / 2) ∈ ℕ0)
5 zexpcl 12737 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
61, 4, 5syl2anc 691 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℤ)
76zred 11358 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (𝐴↑((𝑃 − 1) / 2)) ∈ ℝ)
8 0red 9920 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 0 ∈ ℝ)
9 1red 9934 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 1 ∈ ℝ)
10 eldifi 3694 . . . . . . . . . . . 12 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ∈ ℙ)
1110ad2antlr 759 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 𝑃 ∈ ℙ)
12 prmuz2 15246 . . . . . . . . . . 11 (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ‘2))
1311, 12syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 𝑃 ∈ (ℤ‘2))
14 eluz2b2 11637 . . . . . . . . . 10 (𝑃 ∈ (ℤ‘2) ↔ (𝑃 ∈ ℕ ∧ 1 < 𝑃))
1513, 14sylib 207 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (𝑃 ∈ ℕ ∧ 1 < 𝑃))
1615simpld 474 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 𝑃 ∈ ℕ)
1716nnrpd 11746 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 𝑃 ∈ ℝ+)
18 0zd 11266 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 0 ∈ ℤ)
19 simpr 476 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 𝑃𝐴)
20 dvdsval3 14825 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ 𝐴 ∈ ℤ) → (𝑃𝐴 ↔ (𝐴 mod 𝑃) = 0))
2116, 1, 20syl2anc 691 . . . . . . . . . . 11 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (𝑃𝐴 ↔ (𝐴 mod 𝑃) = 0))
2219, 21mpbid 221 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (𝐴 mod 𝑃) = 0)
23 0mod 12563 . . . . . . . . . . 11 (𝑃 ∈ ℝ+ → (0 mod 𝑃) = 0)
2417, 23syl 17 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (0 mod 𝑃) = 0)
2522, 24eqtr4d 2647 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (𝐴 mod 𝑃) = (0 mod 𝑃))
26 modexp 12861 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) ∧ (((𝑃 − 1) / 2) ∈ ℕ0𝑃 ∈ ℝ+) ∧ (𝐴 mod 𝑃) = (0 mod 𝑃)) → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = ((0↑((𝑃 − 1) / 2)) mod 𝑃))
271, 18, 4, 17, 25, 26syl221anc 1329 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = ((0↑((𝑃 − 1) / 2)) mod 𝑃))
2830expd 12886 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (0↑((𝑃 − 1) / 2)) = 0)
2928oveq1d 6564 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((0↑((𝑃 − 1) / 2)) mod 𝑃) = (0 mod 𝑃))
3027, 29eqtrd 2644 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (0 mod 𝑃))
31 modadd1 12569 . . . . . . 7 ((((𝐴↑((𝑃 − 1) / 2)) ∈ ℝ ∧ 0 ∈ ℝ) ∧ (1 ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ ((𝐴↑((𝑃 − 1) / 2)) mod 𝑃) = (0 mod 𝑃)) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = ((0 + 1) mod 𝑃))
327, 8, 9, 17, 30, 31syl221anc 1329 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = ((0 + 1) mod 𝑃))
33 0p1e1 11009 . . . . . . 7 (0 + 1) = 1
3433oveq1i 6559 . . . . . 6 ((0 + 1) mod 𝑃) = (1 mod 𝑃)
3532, 34syl6eq 2660 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = (1 mod 𝑃))
3616nnred 10912 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 𝑃 ∈ ℝ)
3715simprd 478 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → 1 < 𝑃)
38 1mod 12564 . . . . . 6 ((𝑃 ∈ ℝ ∧ 1 < 𝑃) → (1 mod 𝑃) = 1)
3936, 37, 38syl2anc 691 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (1 mod 𝑃) = 1)
4035, 39eqtrd 2644 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 1)
4140oveq1d 6564 . . 3 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (1 − 1))
42 1m1e0 10966 . . . 4 (1 − 1) = 0
43 lgslem2.z . . . . . 6 𝑍 = {𝑥 ∈ ℤ ∣ (abs‘𝑥) ≤ 1}
4443lgslem2 24823 . . . . 5 (-1 ∈ 𝑍 ∧ 0 ∈ 𝑍 ∧ 1 ∈ 𝑍)
4544simp2i 1064 . . . 4 0 ∈ 𝑍
4642, 45eqeltri 2684 . . 3 (1 − 1) ∈ 𝑍
4741, 46syl6eqel 2696 . 2 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
48 lgslem1 24822 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2})
49 elpri 4145 . . . 4 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) ∈ {0, 2} → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2))
50 oveq1 6556 . . . . . 6 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (0 − 1))
51 df-neg 10148 . . . . . . 7 -1 = (0 − 1)
5244simp1i 1063 . . . . . . 7 -1 ∈ 𝑍
5351, 52eqeltrri 2685 . . . . . 6 (0 − 1) ∈ 𝑍
5450, 53syl6eqel 2696 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
55 oveq1 6556 . . . . . 6 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) = (2 − 1))
56 2m1e1 11012 . . . . . . 7 (2 − 1) = 1
5744simp3i 1065 . . . . . . 7 1 ∈ 𝑍
5856, 57eqeltri 2684 . . . . . 6 (2 − 1) ∈ 𝑍
5955, 58syl6eqel 2696 . . . . 5 ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2 → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
6054, 59jaoi 393 . . . 4 (((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 0 ∨ (((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) = 2) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
6148, 49, 603syl 18 . . 3 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2}) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
62613expa 1257 . 2 (((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) ∧ ¬ 𝑃𝐴) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
6347, 62pm2.61dan 828 1 ((𝐴 ∈ ℤ ∧ 𝑃 ∈ (ℙ ∖ {2})) → ((((𝐴↑((𝑃 − 1) / 2)) + 1) mod 𝑃) − 1) ∈ 𝑍)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  {crab 2900   ∖ cdif 3537  {csn 4125  {cpr 4127   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℝcr 9814  0cc0 9815  1c1 9816   + caddc 9818   < clt 9953   ≤ cle 9954   − cmin 10145  -cneg 10146   / cdiv 10563  ℕcn 10897  2c2 10947  ℕ0cn0 11169  ℤcz 11254  ℤ≥cuz 11563  ℝ+crp 11708   mod cmo 12530  ↑cexp 12722  abscabs 13822   ∥ cdvds 14821  ℙcprime 15223 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-fl 12455  df-mod 12531  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-gcd 15055  df-prm 15224  df-phi 15309 This theorem is referenced by:  lgsfcl2  24828
 Copyright terms: Public domain W3C validator