Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthicc Structured version   Visualization version   GIF version

Theorem ivthicc 23034
 Description: The interval between any two points of a continuous real function is contained in the range of the function. Equivalently, the range of a continuous real function is convex. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ivthicc.1 (𝜑𝐴 ∈ ℝ)
ivthicc.2 (𝜑𝐵 ∈ ℝ)
ivthicc.3 (𝜑𝑀 ∈ (𝐴[,]𝐵))
ivthicc.4 (𝜑𝑁 ∈ (𝐴[,]𝐵))
ivthicc.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivthicc.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivthicc.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
Assertion
Ref Expression
ivthicc (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ran 𝐹)
Distinct variable groups:   𝑥,𝐷   𝑥,𝐹   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵

Proof of Theorem ivthicc
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 786 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝜑)
2 ivthicc.3 . . . . . . . . 9 (𝜑𝑀 ∈ (𝐴[,]𝐵))
3 ivthicc.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
4 ivthicc.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
5 elicc2 12109 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑀 ∈ (𝐴[,]𝐵) ↔ (𝑀 ∈ ℝ ∧ 𝐴𝑀𝑀𝐵)))
63, 4, 5syl2anc 691 . . . . . . . . 9 (𝜑 → (𝑀 ∈ (𝐴[,]𝐵) ↔ (𝑀 ∈ ℝ ∧ 𝐴𝑀𝑀𝐵)))
72, 6mpbid 221 . . . . . . . 8 (𝜑 → (𝑀 ∈ ℝ ∧ 𝐴𝑀𝑀𝐵))
87simp1d 1066 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
98ad2antrr 758 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑀 ∈ ℝ)
10 ivthicc.4 . . . . . . . . 9 (𝜑𝑁 ∈ (𝐴[,]𝐵))
11 elicc2 12109 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑁 ∈ (𝐴[,]𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝐴𝑁𝑁𝐵)))
123, 4, 11syl2anc 691 . . . . . . . . 9 (𝜑 → (𝑁 ∈ (𝐴[,]𝐵) ↔ (𝑁 ∈ ℝ ∧ 𝐴𝑁𝑁𝐵)))
1310, 12mpbid 221 . . . . . . . 8 (𝜑 → (𝑁 ∈ ℝ ∧ 𝐴𝑁𝑁𝐵))
1413simp1d 1066 . . . . . . 7 (𝜑𝑁 ∈ ℝ)
1514ad2antrr 758 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑁 ∈ ℝ)
16 ivthicc.8 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1716ralrimiva 2949 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
18 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
1918eleq1d 2672 . . . . . . . . . . 11 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑀) ∈ ℝ))
2019rspcv 3278 . . . . . . . . . 10 (𝑀 ∈ (𝐴[,]𝐵) → (∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ → (𝐹𝑀) ∈ ℝ))
212, 17, 20sylc 63 . . . . . . . . 9 (𝜑 → (𝐹𝑀) ∈ ℝ)
22 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝑁 → (𝐹𝑥) = (𝐹𝑁))
2322eleq1d 2672 . . . . . . . . . . 11 (𝑥 = 𝑁 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑁) ∈ ℝ))
2423rspcv 3278 . . . . . . . . . 10 (𝑁 ∈ (𝐴[,]𝐵) → (∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ → (𝐹𝑁) ∈ ℝ))
2510, 17, 24sylc 63 . . . . . . . . 9 (𝜑 → (𝐹𝑁) ∈ ℝ)
26 iccssre 12126 . . . . . . . . 9 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ℝ)
2721, 25, 26syl2anc 691 . . . . . . . 8 (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ℝ)
2827sselda 3568 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → 𝑦 ∈ ℝ)
2928adantr 480 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑦 ∈ ℝ)
30 simpr 476 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑀 < 𝑁)
317simp2d 1067 . . . . . . . . 9 (𝜑𝐴𝑀)
3213simp3d 1068 . . . . . . . . 9 (𝜑𝑁𝐵)
33 iccss 12112 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝑀𝑁𝐵)) → (𝑀[,]𝑁) ⊆ (𝐴[,]𝐵))
343, 4, 31, 32, 33syl22anc 1319 . . . . . . . 8 (𝜑 → (𝑀[,]𝑁) ⊆ (𝐴[,]𝐵))
35 ivthicc.5 . . . . . . . 8 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
3634, 35sstrd 3578 . . . . . . 7 (𝜑 → (𝑀[,]𝑁) ⊆ 𝐷)
3736ad2antrr 758 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → (𝑀[,]𝑁) ⊆ 𝐷)
38 ivthicc.7 . . . . . . 7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
3938ad2antrr 758 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝐹 ∈ (𝐷cn→ℂ))
4034sselda 3568 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ (𝐴[,]𝐵))
4140, 16syldan 486 . . . . . . 7 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → (𝐹𝑥) ∈ ℝ)
421, 41sylan 487 . . . . . 6 ((((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝐹𝑥) ∈ ℝ)
43 elicc2 12109 . . . . . . . . . 10 (((𝐹𝑀) ∈ ℝ ∧ (𝐹𝑁) ∈ ℝ) → (𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁))))
4421, 25, 43syl2anc 691 . . . . . . . . 9 (𝜑 → (𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)) ↔ (𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁))))
4544biimpa 500 . . . . . . . 8 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → (𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
46 3simpc 1053 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ (𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
4745, 46syl 17 . . . . . . 7 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
4847adantr 480 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
499, 15, 29, 30, 37, 39, 42, 48ivthle 23032 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → ∃𝑧 ∈ (𝑀[,]𝑁)(𝐹𝑧) = 𝑦)
5036sselda 3568 . . . . . . 7 ((𝜑𝑧 ∈ (𝑀[,]𝑁)) → 𝑧𝐷)
51 cncff 22504 . . . . . . . . . 10 (𝐹 ∈ (𝐷cn→ℂ) → 𝐹:𝐷⟶ℂ)
52 ffn 5958 . . . . . . . . . 10 (𝐹:𝐷⟶ℂ → 𝐹 Fn 𝐷)
5338, 51, 523syl 18 . . . . . . . . 9 (𝜑𝐹 Fn 𝐷)
54 fnfvelrn 6264 . . . . . . . . 9 ((𝐹 Fn 𝐷𝑧𝐷) → (𝐹𝑧) ∈ ran 𝐹)
5553, 54sylan 487 . . . . . . . 8 ((𝜑𝑧𝐷) → (𝐹𝑧) ∈ ran 𝐹)
56 eleq1 2676 . . . . . . . 8 ((𝐹𝑧) = 𝑦 → ((𝐹𝑧) ∈ ran 𝐹𝑦 ∈ ran 𝐹))
5755, 56syl5ibcom 234 . . . . . . 7 ((𝜑𝑧𝐷) → ((𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
5850, 57syldan 486 . . . . . 6 ((𝜑𝑧 ∈ (𝑀[,]𝑁)) → ((𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
5958rexlimdva 3013 . . . . 5 (𝜑 → (∃𝑧 ∈ (𝑀[,]𝑁)(𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
601, 49, 59sylc 63 . . . 4 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 < 𝑁) → 𝑦 ∈ ran 𝐹)
61 simplr 788 . . . . . . 7 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)))
62 simpr 476 . . . . . . . . . 10 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑀 = 𝑁)
6362fveq2d 6107 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → (𝐹𝑀) = (𝐹𝑁))
6463oveq2d 6565 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹𝑀)[,](𝐹𝑀)) = ((𝐹𝑀)[,](𝐹𝑁)))
6521rexrd 9968 . . . . . . . . . 10 (𝜑 → (𝐹𝑀) ∈ ℝ*)
6665ad2antrr 758 . . . . . . . . 9 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → (𝐹𝑀) ∈ ℝ*)
67 iccid 12091 . . . . . . . . 9 ((𝐹𝑀) ∈ ℝ* → ((𝐹𝑀)[,](𝐹𝑀)) = {(𝐹𝑀)})
6866, 67syl 17 . . . . . . . 8 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹𝑀)[,](𝐹𝑀)) = {(𝐹𝑀)})
6964, 68eqtr3d 2646 . . . . . . 7 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → ((𝐹𝑀)[,](𝐹𝑁)) = {(𝐹𝑀)})
7061, 69eleqtrd 2690 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ {(𝐹𝑀)})
71 elsni 4142 . . . . . 6 (𝑦 ∈ {(𝐹𝑀)} → 𝑦 = (𝐹𝑀))
7270, 71syl 17 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 = (𝐹𝑀))
7335, 2sseldd 3569 . . . . . . 7 (𝜑𝑀𝐷)
74 fnfvelrn 6264 . . . . . . 7 ((𝐹 Fn 𝐷𝑀𝐷) → (𝐹𝑀) ∈ ran 𝐹)
7553, 73, 74syl2anc 691 . . . . . 6 (𝜑 → (𝐹𝑀) ∈ ran 𝐹)
7675ad2antrr 758 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → (𝐹𝑀) ∈ ran 𝐹)
7772, 76eqeltrd 2688 . . . 4 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑀 = 𝑁) → 𝑦 ∈ ran 𝐹)
78 simpll 786 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝜑)
7914ad2antrr 758 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑁 ∈ ℝ)
808ad2antrr 758 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑀 ∈ ℝ)
8128adantr 480 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑦 ∈ ℝ)
82 simpr 476 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑁 < 𝑀)
8313simp2d 1067 . . . . . . . . 9 (𝜑𝐴𝑁)
847simp3d 1068 . . . . . . . . 9 (𝜑𝑀𝐵)
85 iccss 12112 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝑁𝑀𝐵)) → (𝑁[,]𝑀) ⊆ (𝐴[,]𝐵))
863, 4, 83, 84, 85syl22anc 1319 . . . . . . . 8 (𝜑 → (𝑁[,]𝑀) ⊆ (𝐴[,]𝐵))
8786, 35sstrd 3578 . . . . . . 7 (𝜑 → (𝑁[,]𝑀) ⊆ 𝐷)
8887ad2antrr 758 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → (𝑁[,]𝑀) ⊆ 𝐷)
8938ad2antrr 758 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝐹 ∈ (𝐷cn→ℂ))
9086sselda 3568 . . . . . . . 8 ((𝜑𝑥 ∈ (𝑁[,]𝑀)) → 𝑥 ∈ (𝐴[,]𝐵))
9190, 16syldan 486 . . . . . . 7 ((𝜑𝑥 ∈ (𝑁[,]𝑀)) → (𝐹𝑥) ∈ ℝ)
9278, 91sylan 487 . . . . . 6 ((((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) ∧ 𝑥 ∈ (𝑁[,]𝑀)) → (𝐹𝑥) ∈ ℝ)
9347adantr 480 . . . . . 6 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → ((𝐹𝑀) ≤ 𝑦𝑦 ≤ (𝐹𝑁)))
9479, 80, 81, 82, 88, 89, 92, 93ivthle2 23033 . . . . 5 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → ∃𝑧 ∈ (𝑁[,]𝑀)(𝐹𝑧) = 𝑦)
9587sselda 3568 . . . . . . 7 ((𝜑𝑧 ∈ (𝑁[,]𝑀)) → 𝑧𝐷)
9695, 57syldan 486 . . . . . 6 ((𝜑𝑧 ∈ (𝑁[,]𝑀)) → ((𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
9796rexlimdva 3013 . . . . 5 (𝜑 → (∃𝑧 ∈ (𝑁[,]𝑀)(𝐹𝑧) = 𝑦𝑦 ∈ ran 𝐹))
9878, 94, 97sylc 63 . . . 4 (((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) ∧ 𝑁 < 𝑀) → 𝑦 ∈ ran 𝐹)
998, 14lttri4d 10057 . . . . 5 (𝜑 → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
10099adantr 480 . . . 4 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
10160, 77, 98, 100mpjao3dan 1387 . . 3 ((𝜑𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁))) → 𝑦 ∈ ran 𝐹)
102101ex 449 . 2 (𝜑 → (𝑦 ∈ ((𝐹𝑀)[,](𝐹𝑁)) → 𝑦 ∈ ran 𝐹))
103102ssrdv 3574 1 (𝜑 → ((𝐹𝑀)[,](𝐹𝑁)) ⊆ ran 𝐹)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∨ w3o 1030   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540  {csn 4125   class class class wbr 4583  ran crn 5039   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814  ℝ*cxr 9952   < clt 9953   ≤ cle 9954  [,]cicc 12049  –cn→ccncf 22487 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489 This theorem is referenced by:  evthicc2  23036
 Copyright terms: Public domain W3C validator