Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  evthicc2 Structured version   Visualization version   GIF version

Theorem evthicc2 23036
 Description: Combine ivthicc 23034 with evthicc 23035 to exactly describe the image of a closed interval. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
evthicc.1 (𝜑𝐴 ∈ ℝ)
evthicc.2 (𝜑𝐵 ∈ ℝ)
evthicc.3 (𝜑𝐴𝐵)
evthicc.4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
Assertion
Ref Expression
evthicc2 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦

Proof of Theorem evthicc2
Dummy variables 𝑎 𝑏 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evthicc.1 . . . 4 (𝜑𝐴 ∈ ℝ)
2 evthicc.2 . . . 4 (𝜑𝐵 ∈ ℝ)
3 evthicc.3 . . . 4 (𝜑𝐴𝐵)
4 evthicc.4 . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
51, 2, 3, 4evthicc 23035 . . 3 (𝜑 → (∃𝑎 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑎) ∧ ∃𝑏 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑏) ≤ (𝐹𝑧)))
6 reeanv 3086 . . 3 (∃𝑎 ∈ (𝐴[,]𝐵)∃𝑏 ∈ (𝐴[,]𝐵)(∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑏) ≤ (𝐹𝑧)) ↔ (∃𝑎 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑎) ∧ ∃𝑏 ∈ (𝐴[,]𝐵)∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑏) ≤ (𝐹𝑧)))
75, 6sylibr 223 . 2 (𝜑 → ∃𝑎 ∈ (𝐴[,]𝐵)∃𝑏 ∈ (𝐴[,]𝐵)(∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑏) ≤ (𝐹𝑧)))
8 r19.26 3046 . . . 4 (∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧)) ↔ (∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑏) ≤ (𝐹𝑧)))
94adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
10 cncff 22504 . . . . . . . . 9 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
119, 10syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
12 simprr 792 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑏 ∈ (𝐴[,]𝐵))
1311, 12ffvelrnd 6268 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹𝑏) ∈ ℝ)
1413adantr 480 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → (𝐹𝑏) ∈ ℝ)
15 simprl 790 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝑎 ∈ (𝐴[,]𝐵))
1611, 15ffvelrnd 6268 . . . . . . 7 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐹𝑎) ∈ ℝ)
1716adantr 480 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → (𝐹𝑎) ∈ ℝ)
1811adantr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
19 ffn 5958 . . . . . . . . . 10 (𝐹:(𝐴[,]𝐵)⟶ℝ → 𝐹 Fn (𝐴[,]𝐵))
2018, 19syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → 𝐹 Fn (𝐴[,]𝐵))
2113adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑏) ∈ ℝ)
2216adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑎) ∈ ℝ)
23 elicc2 12109 . . . . . . . . . . . . . 14 (((𝐹𝑏) ∈ ℝ ∧ (𝐹𝑎) ∈ ℝ) → ((𝐹𝑧) ∈ ((𝐹𝑏)[,](𝐹𝑎)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎))))
2421, 22, 23syl2anc 691 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹𝑧) ∈ ((𝐹𝑏)[,](𝐹𝑎)) ↔ ((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎))))
25 3anass 1035 . . . . . . . . . . . . 13 (((𝐹𝑧) ∈ ℝ ∧ (𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎)) ↔ ((𝐹𝑧) ∈ ℝ ∧ ((𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎))))
2624, 25syl6bb 275 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹𝑧) ∈ ((𝐹𝑏)[,](𝐹𝑎)) ↔ ((𝐹𝑧) ∈ ℝ ∧ ((𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎)))))
27 ancom 465 . . . . . . . . . . . . 13 (((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧)) ↔ ((𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎)))
2811ffvelrnda 6267 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (𝐹𝑧) ∈ ℝ)
2928biantrurd 528 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (((𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎)) ↔ ((𝐹𝑧) ∈ ℝ ∧ ((𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎)))))
3027, 29syl5bb 271 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → (((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧)) ↔ ((𝐹𝑧) ∈ ℝ ∧ ((𝐹𝑏) ≤ (𝐹𝑧) ∧ (𝐹𝑧) ≤ (𝐹𝑎)))))
3126, 30bitr4d 270 . . . . . . . . . . 11 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑧 ∈ (𝐴[,]𝐵)) → ((𝐹𝑧) ∈ ((𝐹𝑏)[,](𝐹𝑎)) ↔ ((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))))
3231ralbidva 2968 . . . . . . . . . 10 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ∈ ((𝐹𝑏)[,](𝐹𝑎)) ↔ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))))
3332biimpar 501 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ∈ ((𝐹𝑏)[,](𝐹𝑎)))
34 ffnfv 6295 . . . . . . . . 9 (𝐹:(𝐴[,]𝐵)⟶((𝐹𝑏)[,](𝐹𝑎)) ↔ (𝐹 Fn (𝐴[,]𝐵) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ∈ ((𝐹𝑏)[,](𝐹𝑎))))
3520, 33, 34sylanbrc 695 . . . . . . . 8 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → 𝐹:(𝐴[,]𝐵)⟶((𝐹𝑏)[,](𝐹𝑎)))
36 frn 5966 . . . . . . . 8 (𝐹:(𝐴[,]𝐵)⟶((𝐹𝑏)[,](𝐹𝑎)) → ran 𝐹 ⊆ ((𝐹𝑏)[,](𝐹𝑎)))
3735, 36syl 17 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → ran 𝐹 ⊆ ((𝐹𝑏)[,](𝐹𝑎)))
381adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐴 ∈ ℝ)
392adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐵 ∈ ℝ)
40 ssid 3587 . . . . . . . . . 10 (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵)
4140a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (𝐴[,]𝐵) ⊆ (𝐴[,]𝐵))
42 ax-resscn 9872 . . . . . . . . . . 11 ℝ ⊆ ℂ
43 ssid 3587 . . . . . . . . . . 11 ℂ ⊆ ℂ
44 cncfss 22510 . . . . . . . . . . 11 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ))
4542, 43, 44mp2an 704 . . . . . . . . . 10 ((𝐴[,]𝐵)–cn→ℝ) ⊆ ((𝐴[,]𝐵)–cn→ℂ)
4645, 9sseldi 3566 . . . . . . . . 9 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
4711ffvelrnda 6267 . . . . . . . . 9 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
4838, 39, 12, 15, 41, 46, 47ivthicc 23034 . . . . . . . 8 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((𝐹𝑏)[,](𝐹𝑎)) ⊆ ran 𝐹)
4948adantr 480 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → ((𝐹𝑏)[,](𝐹𝑎)) ⊆ ran 𝐹)
5037, 49eqssd 3585 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → ran 𝐹 = ((𝐹𝑏)[,](𝐹𝑎)))
51 rspceov 6590 . . . . . 6 (((𝐹𝑏) ∈ ℝ ∧ (𝐹𝑎) ∈ ℝ ∧ ran 𝐹 = ((𝐹𝑏)[,](𝐹𝑎))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦))
5214, 17, 50, 51syl3anc 1318 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧))) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦))
5352ex 449 . . . 4 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → (∀𝑧 ∈ (𝐴[,]𝐵)((𝐹𝑧) ≤ (𝐹𝑎) ∧ (𝐹𝑏) ≤ (𝐹𝑧)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦)))
548, 53syl5bir 232 . . 3 ((𝜑 ∧ (𝑎 ∈ (𝐴[,]𝐵) ∧ 𝑏 ∈ (𝐴[,]𝐵))) → ((∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑏) ≤ (𝐹𝑧)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦)))
5554rexlimdvva 3020 . 2 (𝜑 → (∃𝑎 ∈ (𝐴[,]𝐵)∃𝑏 ∈ (𝐴[,]𝐵)(∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑧) ≤ (𝐹𝑎) ∧ ∀𝑧 ∈ (𝐴[,]𝐵)(𝐹𝑏) ≤ (𝐹𝑧)) → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦)))
567, 55mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ ran 𝐹 = (𝑥[,]𝑦))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540   class class class wbr 4583  ran crn 5039   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814   ≤ cle 9954  [,]cicc 12049  –cn→ccncf 22487 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489 This theorem is referenced by:  dvcnvrelem1  23584
 Copyright terms: Public domain W3C validator