MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ivthicc Structured version   Unicode version

Theorem ivthicc 20945
Description: The interval between any two points of a continuous real function is contained in the range of the function. Equivalently, the range of a continuous real function is convex. (Contributed by Mario Carneiro, 12-Aug-2014.)
Hypotheses
Ref Expression
ivthicc.1  |-  ( ph  ->  A  e.  RR )
ivthicc.2  |-  ( ph  ->  B  e.  RR )
ivthicc.3  |-  ( ph  ->  M  e.  ( A [,] B ) )
ivthicc.4  |-  ( ph  ->  N  e.  ( A [,] B ) )
ivthicc.5  |-  ( ph  ->  ( A [,] B
)  C_  D )
ivthicc.7  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
ivthicc.8  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
Assertion
Ref Expression
ivthicc  |-  ( ph  ->  ( ( F `  M ) [,] ( F `  N )
)  C_  ran  F )
Distinct variable groups:    x, D    x, F    x, M    x, N    ph, x    x, A    x, B

Proof of Theorem ivthicc
Dummy variables  z 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivthicc.3 . . . . . . . 8  |-  ( ph  ->  M  e.  ( A [,] B ) )
2 ivthicc.1 . . . . . . . . 9  |-  ( ph  ->  A  e.  RR )
3 ivthicc.2 . . . . . . . . 9  |-  ( ph  ->  B  e.  RR )
4 elicc2 11363 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( M  e.  ( A [,] B )  <-> 
( M  e.  RR  /\  A  <_  M  /\  M  <_  B ) ) )
52, 3, 4syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( M  e.  ( A [,] B )  <-> 
( M  e.  RR  /\  A  <_  M  /\  M  <_  B ) ) )
61, 5mpbid 210 . . . . . . 7  |-  ( ph  ->  ( M  e.  RR  /\  A  <_  M  /\  M  <_  B ) )
76simp1d 1000 . . . . . 6  |-  ( ph  ->  M  e.  RR )
8 ivthicc.4 . . . . . . . 8  |-  ( ph  ->  N  e.  ( A [,] B ) )
9 elicc2 11363 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( N  e.  ( A [,] B )  <-> 
( N  e.  RR  /\  A  <_  N  /\  N  <_  B ) ) )
102, 3, 9syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( N  e.  ( A [,] B )  <-> 
( N  e.  RR  /\  A  <_  N  /\  N  <_  B ) ) )
118, 10mpbid 210 . . . . . . 7  |-  ( ph  ->  ( N  e.  RR  /\  A  <_  N  /\  N  <_  B ) )
1211simp1d 1000 . . . . . 6  |-  ( ph  ->  N  e.  RR )
137, 12lttri4d 9518 . . . . 5  |-  ( ph  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
1413adantr 465 . . . 4  |-  ( (
ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  ->  ( M  <  N  \/  M  =  N  \/  N  <  M ) )
15 simpll 753 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  ph )
167ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  M  e.  RR )
1712ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  N  e.  RR )
18 ivthicc.8 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( A [,] B ) )  ->  ( F `  x )  e.  RR )
1918ralrimiva 2802 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  ( A [,] B ) ( F `  x
)  e.  RR )
20 fveq2 5694 . . . . . . . . . . . . 13  |-  ( x  =  M  ->  ( F `  x )  =  ( F `  M ) )
2120eleq1d 2509 . . . . . . . . . . . 12  |-  ( x  =  M  ->  (
( F `  x
)  e.  RR  <->  ( F `  M )  e.  RR ) )
2221rspcv 3072 . . . . . . . . . . 11  |-  ( M  e.  ( A [,] B )  ->  ( A. x  e.  ( A [,] B ) ( F `  x )  e.  RR  ->  ( F `  M )  e.  RR ) )
231, 19, 22sylc 60 . . . . . . . . . 10  |-  ( ph  ->  ( F `  M
)  e.  RR )
24 fveq2 5694 . . . . . . . . . . . . 13  |-  ( x  =  N  ->  ( F `  x )  =  ( F `  N ) )
2524eleq1d 2509 . . . . . . . . . . . 12  |-  ( x  =  N  ->  (
( F `  x
)  e.  RR  <->  ( F `  N )  e.  RR ) )
2625rspcv 3072 . . . . . . . . . . 11  |-  ( N  e.  ( A [,] B )  ->  ( A. x  e.  ( A [,] B ) ( F `  x )  e.  RR  ->  ( F `  N )  e.  RR ) )
278, 19, 26sylc 60 . . . . . . . . . 10  |-  ( ph  ->  ( F `  N
)  e.  RR )
28 iccssre 11380 . . . . . . . . . 10  |-  ( ( ( F `  M
)  e.  RR  /\  ( F `  N )  e.  RR )  -> 
( ( F `  M ) [,] ( F `  N )
)  C_  RR )
2923, 27, 28syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  M ) [,] ( F `  N )
)  C_  RR )
3029sselda 3359 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  ->  y  e.  RR )
3130adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  y  e.  RR )
32 simpr 461 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  M  <  N )
336simp2d 1001 . . . . . . . . . 10  |-  ( ph  ->  A  <_  M )
3411simp3d 1002 . . . . . . . . . 10  |-  ( ph  ->  N  <_  B )
35 iccss 11366 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  M  /\  N  <_  B
) )  ->  ( M [,] N )  C_  ( A [,] B ) )
362, 3, 33, 34, 35syl22anc 1219 . . . . . . . . 9  |-  ( ph  ->  ( M [,] N
)  C_  ( A [,] B ) )
37 ivthicc.5 . . . . . . . . 9  |-  ( ph  ->  ( A [,] B
)  C_  D )
3836, 37sstrd 3369 . . . . . . . 8  |-  ( ph  ->  ( M [,] N
)  C_  D )
3938ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  ( M [,] N )  C_  D )
40 ivthicc.7 . . . . . . . 8  |-  ( ph  ->  F  e.  ( D
-cn-> CC ) )
4140ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  F  e.  ( D -cn-> CC ) )
4236sselda 3359 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  x  e.  ( A [,] B ) )
4342, 18syldan 470 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( M [,] N ) )  ->  ( F `  x )  e.  RR )
4415, 43sylan 471 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N
) ) )  /\  M  <  N )  /\  x  e.  ( M [,] N ) )  -> 
( F `  x
)  e.  RR )
45 elicc2 11363 . . . . . . . . . . 11  |-  ( ( ( F `  M
)  e.  RR  /\  ( F `  N )  e.  RR )  -> 
( y  e.  ( ( F `  M
) [,] ( F `
 N ) )  <-> 
( y  e.  RR  /\  ( F `  M
)  <_  y  /\  y  <_  ( F `  N ) ) ) )
4623, 27, 45syl2anc 661 . . . . . . . . . 10  |-  ( ph  ->  ( y  e.  ( ( F `  M
) [,] ( F `
 N ) )  <-> 
( y  e.  RR  /\  ( F `  M
)  <_  y  /\  y  <_  ( F `  N ) ) ) )
4746biimpa 484 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  ->  (
y  e.  RR  /\  ( F `  M )  <_  y  /\  y  <_  ( F `  N
) ) )
48 3simpc 987 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  ( F `  M )  <_  y  /\  y  <_  ( F `  N
) )  ->  (
( F `  M
)  <_  y  /\  y  <_  ( F `  N ) ) )
4947, 48syl 16 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  ->  (
( F `  M
)  <_  y  /\  y  <_  ( F `  N ) ) )
5049adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  (
( F `  M
)  <_  y  /\  y  <_  ( F `  N ) ) )
5116, 17, 31, 32, 39, 41, 44, 50ivthle 20943 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  E. z  e.  ( M [,] N
) ( F `  z )  =  y )
5238sselda 3359 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( M [,] N ) )  ->  z  e.  D )
53 cncff 20472 . . . . . . . . . . 11  |-  ( F  e.  ( D -cn-> CC )  ->  F : D
--> CC )
54 ffn 5562 . . . . . . . . . . 11  |-  ( F : D --> CC  ->  F  Fn  D )
5540, 53, 543syl 20 . . . . . . . . . 10  |-  ( ph  ->  F  Fn  D )
56 fnfvelrn 5843 . . . . . . . . . 10  |-  ( ( F  Fn  D  /\  z  e.  D )  ->  ( F `  z
)  e.  ran  F
)
5755, 56sylan 471 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  D )  ->  ( F `  z )  e.  ran  F )
58 eleq1 2503 . . . . . . . . 9  |-  ( ( F `  z )  =  y  ->  (
( F `  z
)  e.  ran  F  <->  y  e.  ran  F ) )
5957, 58syl5ibcom 220 . . . . . . . 8  |-  ( (
ph  /\  z  e.  D )  ->  (
( F `  z
)  =  y  -> 
y  e.  ran  F
) )
6052, 59syldan 470 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( M [,] N ) )  ->  ( ( F `  z )  =  y  ->  y  e. 
ran  F ) )
6160rexlimdva 2844 . . . . . 6  |-  ( ph  ->  ( E. z  e.  ( M [,] N
) ( F `  z )  =  y  ->  y  e.  ran  F ) )
6215, 51, 61sylc 60 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  <  N )  ->  y  e.  ran  F )
63 simplr 754 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  y  e.  ( ( F `  M ) [,] ( F `  N )
) )
64 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  M  =  N )
6564fveq2d 5698 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  ( F `  M )  =  ( F `  N ) )
6665oveq2d 6110 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  (
( F `  M
) [,] ( F `
 M ) )  =  ( ( F `
 M ) [,] ( F `  N
) ) )
6723rexrd 9436 . . . . . . . . . . 11  |-  ( ph  ->  ( F `  M
)  e.  RR* )
6867ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  ( F `  M )  e.  RR* )
69 iccid 11348 . . . . . . . . . 10  |-  ( ( F `  M )  e.  RR*  ->  ( ( F `  M ) [,] ( F `  M ) )  =  { ( F `  M ) } )
7068, 69syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  (
( F `  M
) [,] ( F `
 M ) )  =  { ( F `
 M ) } )
7166, 70eqtr3d 2477 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  (
( F `  M
) [,] ( F `
 N ) )  =  { ( F `
 M ) } )
7263, 71eleqtrd 2519 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  y  e.  { ( F `  M ) } )
73 elsni 3905 . . . . . . 7  |-  ( y  e.  { ( F `
 M ) }  ->  y  =  ( F `  M ) )
7472, 73syl 16 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  y  =  ( F `  M ) )
7537, 1sseldd 3360 . . . . . . . 8  |-  ( ph  ->  M  e.  D )
76 fnfvelrn 5843 . . . . . . . 8  |-  ( ( F  Fn  D  /\  M  e.  D )  ->  ( F `  M
)  e.  ran  F
)
7755, 75, 76syl2anc 661 . . . . . . 7  |-  ( ph  ->  ( F `  M
)  e.  ran  F
)
7877ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  ( F `  M )  e.  ran  F )
7974, 78eqeltrd 2517 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  M  =  N )  ->  y  e.  ran  F )
80 simpll 753 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  ph )
8112ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  N  e.  RR )
827ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  M  e.  RR )
8330adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  y  e.  RR )
84 simpr 461 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  N  <  M )
8511simp2d 1001 . . . . . . . . . 10  |-  ( ph  ->  A  <_  N )
866simp3d 1002 . . . . . . . . . 10  |-  ( ph  ->  M  <_  B )
87 iccss 11366 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  N  /\  M  <_  B
) )  ->  ( N [,] M )  C_  ( A [,] B ) )
882, 3, 85, 86, 87syl22anc 1219 . . . . . . . . 9  |-  ( ph  ->  ( N [,] M
)  C_  ( A [,] B ) )
8988, 37sstrd 3369 . . . . . . . 8  |-  ( ph  ->  ( N [,] M
)  C_  D )
9089ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  ( N [,] M )  C_  D )
9140ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  F  e.  ( D -cn-> CC ) )
9288sselda 3359 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( N [,] M ) )  ->  x  e.  ( A [,] B ) )
9392, 18syldan 470 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( N [,] M ) )  ->  ( F `  x )  e.  RR )
9480, 93sylan 471 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N
) ) )  /\  N  <  M )  /\  x  e.  ( N [,] M ) )  -> 
( F `  x
)  e.  RR )
9549adantr 465 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  (
( F `  M
)  <_  y  /\  y  <_  ( F `  N ) ) )
9681, 82, 83, 84, 90, 91, 94, 95ivthle2 20944 . . . . . 6  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  E. z  e.  ( N [,] M
) ( F `  z )  =  y )
9789sselda 3359 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( N [,] M ) )  ->  z  e.  D )
9897, 59syldan 470 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( N [,] M ) )  ->  ( ( F `  z )  =  y  ->  y  e. 
ran  F ) )
9998rexlimdva 2844 . . . . . 6  |-  ( ph  ->  ( E. z  e.  ( N [,] M
) ( F `  z )  =  y  ->  y  e.  ran  F ) )
10080, 96, 99sylc 60 . . . . 5  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  N  <  M )  ->  y  e.  ran  F )
10162, 79, 1003jaodan 1284 . . . 4  |-  ( ( ( ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  /\  ( M  <  N  \/  M  =  N  \/  N  <  M ) )  -> 
y  e.  ran  F
)
10214, 101mpdan 668 . . 3  |-  ( (
ph  /\  y  e.  ( ( F `  M ) [,] ( F `  N )
) )  ->  y  e.  ran  F )
103102ex 434 . 2  |-  ( ph  ->  ( y  e.  ( ( F `  M
) [,] ( F `
 N ) )  ->  y  e.  ran  F ) )
104103ssrdv 3365 1  |-  ( ph  ->  ( ( F `  M ) [,] ( F `  N )
)  C_  ran  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 964    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2718   E.wrex 2719    C_ wss 3331   {csn 3880   class class class wbr 4295   ran crn 4844    Fn wfn 5416   -->wf 5417   ` cfv 5421  (class class class)co 6094   CCcc 9283   RRcr 9284   RR*cxr 9420    < clt 9421    <_ cle 9422   [,]cicc 11306   -cn->ccncf 20455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375  ax-inf2 7850  ax-cnex 9341  ax-resscn 9342  ax-1cn 9343  ax-icn 9344  ax-addcl 9345  ax-addrcl 9346  ax-mulcl 9347  ax-mulrcl 9348  ax-mulcom 9349  ax-addass 9350  ax-mulass 9351  ax-distr 9352  ax-i2m1 9353  ax-1ne0 9354  ax-1rid 9355  ax-rnegex 9356  ax-rrecex 9357  ax-cnre 9358  ax-pre-lttri 9359  ax-pre-lttrn 9360  ax-pre-ltadd 9361  ax-pre-mulgt0 9362  ax-pre-sup 9363  ax-mulf 9365
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-nel 2612  df-ral 2723  df-rex 2724  df-reu 2725  df-rmo 2726  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-iin 4177  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-se 4683  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-isom 5430  df-riota 6055  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-of 6323  df-om 6480  df-1st 6580  df-2nd 6581  df-supp 6694  df-recs 6835  df-rdg 6869  df-1o 6923  df-2o 6924  df-oadd 6927  df-er 7104  df-map 7219  df-ixp 7267  df-en 7314  df-dom 7315  df-sdom 7316  df-fin 7317  df-fsupp 7624  df-fi 7664  df-sup 7694  df-oi 7727  df-card 8112  df-cda 8340  df-pnf 9423  df-mnf 9424  df-xr 9425  df-ltxr 9426  df-le 9427  df-sub 9600  df-neg 9601  df-div 9997  df-nn 10326  df-2 10383  df-3 10384  df-4 10385  df-5 10386  df-6 10387  df-7 10388  df-8 10389  df-9 10390  df-10 10391  df-n0 10583  df-z 10650  df-dec 10759  df-uz 10865  df-q 10957  df-rp 10995  df-xneg 11092  df-xadd 11093  df-xmul 11094  df-ioo 11307  df-icc 11310  df-fz 11441  df-fzo 11552  df-seq 11810  df-exp 11869  df-hash 12107  df-cj 12591  df-re 12592  df-im 12593  df-sqr 12727  df-abs 12728  df-struct 14179  df-ndx 14180  df-slot 14181  df-base 14182  df-sets 14183  df-ress 14184  df-plusg 14254  df-mulr 14255  df-starv 14256  df-sca 14257  df-vsca 14258  df-ip 14259  df-tset 14260  df-ple 14261  df-ds 14263  df-unif 14264  df-hom 14265  df-cco 14266  df-rest 14364  df-topn 14365  df-0g 14383  df-gsum 14384  df-topgen 14385  df-pt 14386  df-prds 14389  df-xrs 14443  df-qtop 14448  df-imas 14449  df-xps 14451  df-mre 14527  df-mrc 14528  df-acs 14530  df-mnd 15418  df-submnd 15468  df-mulg 15551  df-cntz 15838  df-cmn 16282  df-psmet 17812  df-xmet 17813  df-met 17814  df-bl 17815  df-mopn 17816  df-cnfld 17822  df-top 18506  df-bases 18508  df-topon 18509  df-topsp 18510  df-cn 18834  df-cnp 18835  df-tx 19138  df-hmeo 19331  df-xms 19898  df-ms 19899  df-tms 19900  df-cncf 20457
This theorem is referenced by:  evthicc2  20947
  Copyright terms: Public domain W3C validator