Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccss Structured version   Visualization version   GIF version

Theorem iccss 12112
 Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
iccss (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))

Proof of Theorem iccss
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexr 9964 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 9964 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
31, 2anim12i 588 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
4 df-icc 12053 . . 3 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
5 xrletr 11865 . . 3 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝐶𝐶𝑤) → 𝐴𝑤))
6 xrletr 11865 . . 3 ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝐷𝐷𝐵) → 𝑤𝐵))
74, 4, 5, 6ixxss12 12066 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
83, 7sylan 487 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∈ wcel 1977   ⊆ wss 3540   class class class wbr 4583  (class class class)co 6549  ℝcr 9814  ℝ*cxr 9952   ≤ cle 9954  [,]cicc 12049 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-icc 12053 This theorem is referenced by:  xrhmeo  22553  lebnumii  22573  pcoval1  22621  pcoval2  22624  ivthicc  23034  dyaddisjlem  23169  volsup2  23179  volcn  23180  mbfi1fseqlem5  23292  dvcvx  23587  dvfsumle  23588  dvfsumabs  23590  harmonicbnd3  24534  ppisval  24630  chtwordi  24682  ppiwordi  24688  chpub  24745  cvmliftlem2  30522  fourierdlem76  39075  fourierdlem103  39102  fourierdlem104  39103  fourierdlem107  39106  fourierdlem112  39111  salexct3  39236  salgensscntex  39238
 Copyright terms: Public domain W3C validator