MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvfsumabs Structured version   Visualization version   GIF version

Theorem dvfsumabs 23590
Description: Compare a finite sum to an integral (the integral here is given as a function with a known derivative). (Contributed by Mario Carneiro, 14-May-2016.)
Hypotheses
Ref Expression
dvfsumabs.m (𝜑𝑁 ∈ (ℤ𝑀))
dvfsumabs.a (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ))
dvfsumabs.v ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
dvfsumabs.b (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
dvfsumabs.c (𝑥 = 𝑀𝐴 = 𝐶)
dvfsumabs.d (𝑥 = 𝑁𝐴 = 𝐷)
dvfsumabs.x ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
dvfsumabs.y ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ)
dvfsumabs.l ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → (abs‘(𝑋𝐵)) ≤ 𝑌)
Assertion
Ref Expression
dvfsumabs (𝜑 → (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
Distinct variable groups:   𝐴,𝑘   𝑥,𝑘,𝑀   𝑘,𝑁,𝑥   𝜑,𝑘,𝑥   𝑥,𝑋   𝑥,𝐶   𝑥,𝐷   𝑥,𝑉   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑘)   𝐶(𝑘)   𝐷(𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑌(𝑘)

Proof of Theorem dvfsumabs
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fzofi 12635 . . . . . 6 (𝑀..^𝑁) ∈ Fin
21a1i 11 . . . . 5 (𝜑 → (𝑀..^𝑁) ∈ Fin)
3 dvfsumabs.x . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑋 ∈ ℂ)
4 dvfsumabs.m . . . . . . . . . . . . 13 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzel2 11568 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
64, 5syl 17 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
7 eluzelz 11573 . . . . . . . . . . . . 13 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
84, 7syl 17 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
9 fzval2 12200 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
106, 8, 9syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝑀...𝑁) = ((𝑀[,]𝑁) ∩ ℤ))
11 inss1 3795 . . . . . . . . . . 11 ((𝑀[,]𝑁) ∩ ℤ) ⊆ (𝑀[,]𝑁)
1210, 11syl6eqss 3618 . . . . . . . . . 10 (𝜑 → (𝑀...𝑁) ⊆ (𝑀[,]𝑁))
1312sselda 3568 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 ∈ (𝑀[,]𝑁))
14 dvfsumabs.a . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ))
15 cncff 22504 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℂ)
1614, 15syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℂ)
17 eqid 2610 . . . . . . . . . . . 12 (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) = (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴)
1817fmpt 6289 . . . . . . . . . . 11 (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℂ ↔ (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴):(𝑀[,]𝑁)⟶ℂ)
1916, 18sylibr 223 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℂ)
20 nfcsb1v 3515 . . . . . . . . . . . 12 𝑥𝑦 / 𝑥𝐴
2120nfel1 2765 . . . . . . . . . . 11 𝑥𝑦 / 𝑥𝐴 ∈ ℂ
22 csbeq1a 3508 . . . . . . . . . . . 12 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
2322eleq1d 2672 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐴 ∈ ℂ ↔ 𝑦 / 𝑥𝐴 ∈ ℂ))
2421, 23rspc 3276 . . . . . . . . . 10 (𝑦 ∈ (𝑀[,]𝑁) → (∀𝑥 ∈ (𝑀[,]𝑁)𝐴 ∈ ℂ → 𝑦 / 𝑥𝐴 ∈ ℂ))
2519, 24mpan9 485 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝑀[,]𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
2613, 25syldan 486 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑀...𝑁)) → 𝑦 / 𝑥𝐴 ∈ ℂ)
2726ralrimiva 2949 . . . . . . 7 (𝜑 → ∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℂ)
28 fzofzp1 12431 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
29 csbeq1 3502 . . . . . . . . 9 (𝑦 = (𝑘 + 1) → 𝑦 / 𝑥𝐴 = (𝑘 + 1) / 𝑥𝐴)
3029eleq1d 2672 . . . . . . . 8 (𝑦 = (𝑘 + 1) → (𝑦 / 𝑥𝐴 ∈ ℂ ↔ (𝑘 + 1) / 𝑥𝐴 ∈ ℂ))
3130rspccva 3281 . . . . . . 7 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℂ ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℂ)
3227, 28, 31syl2an 493 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) / 𝑥𝐴 ∈ ℂ)
33 elfzofz 12354 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ (𝑀...𝑁))
34 csbeq1 3502 . . . . . . . . 9 (𝑦 = 𝑘𝑦 / 𝑥𝐴 = 𝑘 / 𝑥𝐴)
3534eleq1d 2672 . . . . . . . 8 (𝑦 = 𝑘 → (𝑦 / 𝑥𝐴 ∈ ℂ ↔ 𝑘 / 𝑥𝐴 ∈ ℂ))
3635rspccva 3281 . . . . . . 7 ((∀𝑦 ∈ (𝑀...𝑁)𝑦 / 𝑥𝐴 ∈ ℂ ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℂ)
3727, 33, 36syl2an 493 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 / 𝑥𝐴 ∈ ℂ)
3832, 37subcld 10271 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) ∈ ℂ)
392, 3, 38fsumsub 14362 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)))
40 vex 3176 . . . . . . . 8 𝑦 ∈ V
4140a1i 11 . . . . . . 7 (𝑦 = 𝑀𝑦 ∈ V)
42 eqeq2 2621 . . . . . . . . 9 (𝑦 = 𝑀 → (𝑥 = 𝑦𝑥 = 𝑀))
4342biimpa 500 . . . . . . . 8 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝑥 = 𝑀)
44 dvfsumabs.c . . . . . . . 8 (𝑥 = 𝑀𝐴 = 𝐶)
4543, 44syl 17 . . . . . . 7 ((𝑦 = 𝑀𝑥 = 𝑦) → 𝐴 = 𝐶)
4641, 45csbied 3526 . . . . . 6 (𝑦 = 𝑀𝑦 / 𝑥𝐴 = 𝐶)
4740a1i 11 . . . . . . 7 (𝑦 = 𝑁𝑦 ∈ V)
48 eqeq2 2621 . . . . . . . . 9 (𝑦 = 𝑁 → (𝑥 = 𝑦𝑥 = 𝑁))
4948biimpa 500 . . . . . . . 8 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝑥 = 𝑁)
50 dvfsumabs.d . . . . . . . 8 (𝑥 = 𝑁𝐴 = 𝐷)
5149, 50syl 17 . . . . . . 7 ((𝑦 = 𝑁𝑥 = 𝑦) → 𝐴 = 𝐷)
5247, 51csbied 3526 . . . . . 6 (𝑦 = 𝑁𝑦 / 𝑥𝐴 = 𝐷)
5334, 29, 46, 52, 4, 26telfsumo2 14376 . . . . 5 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴) = (𝐷𝐶))
5453oveq2d 6565 . . . 4 (𝜑 → (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − Σ𝑘 ∈ (𝑀..^𝑁)((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶)))
5539, 54eqtrd 2644 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶)))
5655fveq2d 6107 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) = (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶))))
573, 38subcld 10271 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) ∈ ℂ)
582, 57fsumcl 14311 . . . 4 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) ∈ ℂ)
5958abscld 14023 . . 3 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ∈ ℝ)
6057abscld 14023 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ∈ ℝ)
612, 60fsumrecl 14312 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ∈ ℝ)
62 dvfsumabs.y . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℝ)
632, 62fsumrecl 14312 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)𝑌 ∈ ℝ)
642, 57fsumabs 14374 . . 3 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)(abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))))
65 elfzoelz 12339 . . . . . . . . . 10 (𝑘 ∈ (𝑀..^𝑁) → 𝑘 ∈ ℤ)
6665adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℤ)
6766zred 11358 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ)
6867rexrd 9968 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℝ*)
69 peano2re 10088 . . . . . . . . 9 (𝑘 ∈ ℝ → (𝑘 + 1) ∈ ℝ)
7067, 69syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ)
7170rexrd 9968 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℝ*)
7267lep1d 10834 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ≤ (𝑘 + 1))
73 ubicc2 12160 . . . . . . 7 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
7468, 71, 72, 73syl3anc 1318 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)))
75 lbicc2 12159 . . . . . . 7 ((𝑘 ∈ ℝ* ∧ (𝑘 + 1) ∈ ℝ*𝑘 ≤ (𝑘 + 1)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
7668, 71, 72, 75syl3anc 1318 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ (𝑘[,](𝑘 + 1)))
776zred 11358 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℝ)
7877adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ)
798zred 11358 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℝ)
8079adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ)
81 elfzole1 12347 . . . . . . . . . . . 12 (𝑘 ∈ (𝑀..^𝑁) → 𝑀𝑘)
8281adantl 481 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀𝑘)
8328adantl 481 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ (𝑀...𝑁))
84 elfzle2 12216 . . . . . . . . . . . 12 ((𝑘 + 1) ∈ (𝑀...𝑁) → (𝑘 + 1) ≤ 𝑁)
8583, 84syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ≤ 𝑁)
86 iccss 12112 . . . . . . . . . . 11 (((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) ∧ (𝑀𝑘 ∧ (𝑘 + 1) ≤ 𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
8778, 80, 82, 85, 86syl22anc 1319 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁))
8887resmptd 5371 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ↾ (𝑘[,](𝑘 + 1))) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))
89 eqid 2610 . . . . . . . . . . 11 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9089subcn 22477 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
9190a1i 11 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
92 iccssre 12126 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀[,]𝑁) ⊆ ℝ)
9377, 79, 92syl2anc 691 . . . . . . . . . . . . . . 15 (𝜑 → (𝑀[,]𝑁) ⊆ ℝ)
9493adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℝ)
95 ax-resscn 9872 . . . . . . . . . . . . . 14 ℝ ⊆ ℂ
9694, 95syl6ss 3580 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀[,]𝑁) ⊆ ℂ)
97 ssid 3587 . . . . . . . . . . . . . 14 ℂ ⊆ ℂ
9897a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℂ ⊆ ℂ)
99 cncfmptc 22522 . . . . . . . . . . . . 13 ((𝑋 ∈ ℂ ∧ (𝑀[,]𝑁) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑋) ∈ ((𝑀[,]𝑁)–cn→ℂ))
1003, 96, 98, 99syl3anc 1318 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑋) ∈ ((𝑀[,]𝑁)–cn→ℂ))
101 cncfmptid 22523 . . . . . . . . . . . . 13 (((𝑀[,]𝑁) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑥) ∈ ((𝑀[,]𝑁)–cn→ℂ))
10296, 97, 101sylancl 693 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝑥) ∈ ((𝑀[,]𝑁)–cn→ℂ))
103100, 102mulcncf 23023 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ (𝑋 · 𝑥)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
10414adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ 𝐴) ∈ ((𝑀[,]𝑁)–cn→ℂ))
10589, 91, 103, 104cncfmpt2f 22525 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℂ))
106 rescncf 22508 . . . . . . . . . 10 ((𝑘[,](𝑘 + 1)) ⊆ (𝑀[,]𝑁) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ∈ ((𝑀[,]𝑁)–cn→ℂ) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℂ)))
10787, 105, 106sylc 63 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑀[,]𝑁) ↦ ((𝑋 · 𝑥) − 𝐴)) ↾ (𝑘[,](𝑘 + 1))) ∈ ((𝑘[,](𝑘 + 1))–cn→ℂ))
10888, 107eqeltrrd 2689 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)) ∈ ((𝑘[,](𝑘 + 1))–cn→ℂ))
10995a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ⊆ ℂ)
11087, 94sstrd 3578 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘[,](𝑘 + 1)) ⊆ ℝ)
11187sselda 3568 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘[,](𝑘 + 1))) → 𝑥 ∈ (𝑀[,]𝑁))
1123adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝑋 ∈ ℂ)
11396sselda 3568 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝑥 ∈ ℂ)
114112, 113mulcld 9939 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → (𝑋 · 𝑥) ∈ ℂ)
11519r19.21bi 2916 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ)
116115adantlr 747 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → 𝐴 ∈ ℂ)
117114, 116subcld 10271 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀[,]𝑁)) → ((𝑋 · 𝑥) − 𝐴) ∈ ℂ)
118111, 117syldan 486 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘[,](𝑘 + 1))) → ((𝑋 · 𝑥) − 𝐴) ∈ ℂ)
11989tgioo2 22414 . . . . . . . . . . . 12 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
120 iccntr 22432 . . . . . . . . . . . . 13 ((𝑘 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑘[,](𝑘 + 1))) = (𝑘(,)(𝑘 + 1)))
12167, 70, 120syl2anc 691 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((int‘(topGen‘ran (,)))‘(𝑘[,](𝑘 + 1))) = (𝑘(,)(𝑘 + 1)))
122109, 110, 118, 119, 89, 121dvmptntr 23540 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (ℝ D (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))))
123 reelprrecn 9907 . . . . . . . . . . . . 13 ℝ ∈ {ℝ, ℂ}
124123a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ℝ ∈ {ℝ, ℂ})
125 ioossicc 12130 . . . . . . . . . . . . . 14 (𝑀(,)𝑁) ⊆ (𝑀[,]𝑁)
126125sseli 3564 . . . . . . . . . . . . 13 (𝑥 ∈ (𝑀(,)𝑁) → 𝑥 ∈ (𝑀[,]𝑁))
127126, 117sylan2 490 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → ((𝑋 · 𝑥) − 𝐴) ∈ ℂ)
128 ovex 6577 . . . . . . . . . . . . 13 (𝑋𝐵) ∈ V
129128a1i 11 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → (𝑋𝐵) ∈ V)
130126, 114sylan2 490 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → (𝑋 · 𝑥) ∈ ℂ)
1313adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝑋 ∈ ℂ)
132125, 96syl5ss 3579 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℂ)
133132sselda 3568 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝑥 ∈ ℂ)
134 1cnd 9935 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 1 ∈ ℂ)
135109sselda 3568 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
136 1cnd 9935 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℂ)
137124dvmptid 23526 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
138125, 94syl5ss 3579 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ⊆ ℝ)
139 iooretop 22379 . . . . . . . . . . . . . . . . 17 (𝑀(,)𝑁) ∈ (topGen‘ran (,))
140139a1i 11 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)𝑁) ∈ (topGen‘ran (,)))
141124, 135, 136, 137, 138, 119, 89, 140dvmptres 23532 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝑥)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 1))
142124, 133, 134, 141, 3dvmptcmul 23533 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 𝑥))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 1)))
1433mulid1d 9936 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 1) = 𝑋)
144143mpteq2dv 4673 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 1)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝑋))
145142, 144eqtrd 2644 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋 · 𝑥))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝑋))
146126, 116sylan2 490 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐴 ∈ ℂ)
147 dvfsumabs.v . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
148147adantlr 747 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑀(,)𝑁)) → 𝐵𝑉)
149 dvfsumabs.b . . . . . . . . . . . . . 14 (𝜑 → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
150149adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐴)) = (𝑥 ∈ (𝑀(,)𝑁) ↦ 𝐵))
151124, 130, 131, 145, 146, 148, 150dvmptsub 23536 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑀(,)𝑁) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑀(,)𝑁) ↦ (𝑋𝐵)))
15278rexrd 9968 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑀 ∈ ℝ*)
153 iooss1 12081 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℝ*𝑀𝑘) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
154152, 82, 153syl2anc 691 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)(𝑘 + 1)))
15580rexrd 9968 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑁 ∈ ℝ*)
156 iooss2 12082 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ* ∧ (𝑘 + 1) ≤ 𝑁) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
157155, 85, 156syl2anc 691 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑀(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
158154, 157sstrd 3578 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ⊆ (𝑀(,)𝑁))
159 iooretop 22379 . . . . . . . . . . . . 13 (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,))
160159a1i 11 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘(,)(𝑘 + 1)) ∈ (topGen‘ran (,)))
161124, 127, 129, 151, 158, 119, 89, 160dvmptres 23532 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
162122, 161eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
163162dmeqd 5248 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = dom (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
164 eqid 2610 . . . . . . . . . 10 (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))
165128, 164dmmpti 5936 . . . . . . . . 9 dom (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)) = (𝑘(,)(𝑘 + 1))
166163, 165syl6eq 2660 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → dom (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑘(,)(𝑘 + 1)))
167162adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))) = (𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵)))
168167fveq1d 6105 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → ((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥) = ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))‘𝑥))
169 simpr 476 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → 𝑥 ∈ (𝑘(,)(𝑘 + 1)))
170164fvmpt2 6200 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ∧ (𝑋𝐵) ∈ V) → ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))‘𝑥) = (𝑋𝐵))
171169, 128, 170sylancl 693 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → ((𝑥 ∈ (𝑘(,)(𝑘 + 1)) ↦ (𝑋𝐵))‘𝑥) = (𝑋𝐵))
172168, 171eqtrd 2644 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → ((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥) = (𝑋𝐵))
173172fveq2d 6107 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) = (abs‘(𝑋𝐵)))
174 dvfsumabs.l . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (𝑀..^𝑁) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1)))) → (abs‘(𝑋𝐵)) ≤ 𝑌)
175174anassrs 678 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘(𝑋𝐵)) ≤ 𝑌)
176173, 175eqbrtrd 4605 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌)
177176ralrimiva 2949 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ (𝑘(,)(𝑘 + 1))(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌)
178 nfcv 2751 . . . . . . . . . . . 12 𝑥abs
179 nfcv 2751 . . . . . . . . . . . . . 14 𝑥
180 nfcv 2751 . . . . . . . . . . . . . 14 𝑥 D
181 nfmpt1 4675 . . . . . . . . . . . . . 14 𝑥(𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))
182179, 180, 181nfov 6575 . . . . . . . . . . . . 13 𝑥(ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))
183 nfcv 2751 . . . . . . . . . . . . 13 𝑥𝑦
184182, 183nffv 6110 . . . . . . . . . . . 12 𝑥((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)
185178, 184nffv 6110 . . . . . . . . . . 11 𝑥(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦))
186 nfcv 2751 . . . . . . . . . . 11 𝑥
187 nfcv 2751 . . . . . . . . . . 11 𝑥𝑌
188185, 186, 187nfbr 4629 . . . . . . . . . 10 𝑥(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌
189 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥) = ((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦))
190189fveq2d 6107 . . . . . . . . . . 11 (𝑥 = 𝑦 → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) = (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)))
191190breq1d 4593 . . . . . . . . . 10 (𝑥 = 𝑦 → ((abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌 ↔ (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌))
192188, 191rspc 3276 . . . . . . . . 9 (𝑦 ∈ (𝑘(,)(𝑘 + 1)) → (∀𝑥 ∈ (𝑘(,)(𝑘 + 1))(abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑥)) ≤ 𝑌 → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌))
193177, 192mpan9 485 . . . . . . . 8 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ 𝑦 ∈ (𝑘(,)(𝑘 + 1))) → (abs‘((ℝ D (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)))‘𝑦)) ≤ 𝑌)
19467, 70, 108, 166, 62, 193dvlip 23560 . . . . . . 7 (((𝜑𝑘 ∈ (𝑀..^𝑁)) ∧ ((𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑘 ∈ (𝑘[,](𝑘 + 1)))) → (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))) ≤ (𝑌 · (abs‘((𝑘 + 1) − 𝑘))))
195194ex 449 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)) ∧ 𝑘 ∈ (𝑘[,](𝑘 + 1))) → (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))) ≤ (𝑌 · (abs‘((𝑘 + 1) − 𝑘)))))
19674, 76, 195mp2and 711 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))) ≤ (𝑌 · (abs‘((𝑘 + 1) − 𝑘))))
197 ovex 6577 . . . . . . . . 9 ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) ∈ V
198 nfcv 2751 . . . . . . . . . 10 𝑥(𝑘 + 1)
199 nfcv 2751 . . . . . . . . . . 11 𝑥(𝑋 · (𝑘 + 1))
200 nfcv 2751 . . . . . . . . . . 11 𝑥
201 nfcsb1v 3515 . . . . . . . . . . 11 𝑥(𝑘 + 1) / 𝑥𝐴
202199, 200, 201nfov 6575 . . . . . . . . . 10 𝑥((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴)
203 oveq2 6557 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → (𝑋 · 𝑥) = (𝑋 · (𝑘 + 1)))
204 csbeq1a 3508 . . . . . . . . . . 11 (𝑥 = (𝑘 + 1) → 𝐴 = (𝑘 + 1) / 𝑥𝐴)
205203, 204oveq12d 6567 . . . . . . . . . 10 (𝑥 = (𝑘 + 1) → ((𝑋 · 𝑥) − 𝐴) = ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴))
206 eqid 2610 . . . . . . . . . 10 (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴)) = (𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))
207198, 202, 205, 206fvmptf 6209 . . . . . . . . 9 (((𝑘 + 1) ∈ (𝑘[,](𝑘 + 1)) ∧ ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) ∈ V) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) = ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴))
20874, 197, 207sylancl 693 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) = ((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴))
20967recnd 9947 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑘 ∈ ℂ)
2103, 209mulcld 9939 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · 𝑘) ∈ ℂ)
211210, 37subcld 10271 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴) ∈ ℂ)
212 nfcv 2751 . . . . . . . . . 10 𝑥𝑘
213 nfcv 2751 . . . . . . . . . . 11 𝑥(𝑋 · 𝑘)
214 nfcsb1v 3515 . . . . . . . . . . 11 𝑥𝑘 / 𝑥𝐴
215213, 200, 214nfov 6575 . . . . . . . . . 10 𝑥((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴)
216 oveq2 6557 . . . . . . . . . . 11 (𝑥 = 𝑘 → (𝑋 · 𝑥) = (𝑋 · 𝑘))
217 csbeq1a 3508 . . . . . . . . . . 11 (𝑥 = 𝑘𝐴 = 𝑘 / 𝑥𝐴)
218216, 217oveq12d 6567 . . . . . . . . . 10 (𝑥 = 𝑘 → ((𝑋 · 𝑥) − 𝐴) = ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴))
219212, 215, 218, 206fvmptf 6209 . . . . . . . . 9 ((𝑘 ∈ (𝑘[,](𝑘 + 1)) ∧ ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴) ∈ ℂ) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘) = ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴))
22076, 211, 219syl2anc 691 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘) = ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴))
221208, 220oveq12d 6567 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘)) = (((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) − ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴)))
222 peano2cn 10087 . . . . . . . . . 10 (𝑘 ∈ ℂ → (𝑘 + 1) ∈ ℂ)
223209, 222syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑘 + 1) ∈ ℂ)
2243, 223mulcld 9939 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · (𝑘 + 1)) ∈ ℂ)
225224, 210, 32, 37sub4d 10320 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (((𝑋 · (𝑘 + 1)) − (𝑘 + 1) / 𝑥𝐴) − ((𝑋 · 𝑘) − 𝑘 / 𝑥𝐴)))
226 1cnd 9935 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 1 ∈ ℂ)
227209, 226pncan2d 10273 . . . . . . . . . 10 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑘 + 1) − 𝑘) = 1)
228227oveq2d 6565 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = (𝑋 · 1))
2293, 223, 209subdid 10365 . . . . . . . . 9 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 · ((𝑘 + 1) − 𝑘)) = ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)))
230228, 229, 1433eqtr3d 2652 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → ((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) = 𝑋)
231230oveq1d 6564 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (((𝑋 · (𝑘 + 1)) − (𝑋 · 𝑘)) − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)))
232221, 225, 2313eqtr2rd 2651 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴)) = (((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘)))
233232fveq2d 6107 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) = (abs‘(((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘(𝑘 + 1)) − ((𝑥 ∈ (𝑘[,](𝑘 + 1)) ↦ ((𝑋 · 𝑥) − 𝐴))‘𝑘))))
234227fveq2d 6107 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘((𝑘 + 1) − 𝑘)) = (abs‘1))
235 abs1 13885 . . . . . . . 8 (abs‘1) = 1
236234, 235syl6eq 2660 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘((𝑘 + 1) − 𝑘)) = 1)
237236oveq2d 6565 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑌 · (abs‘((𝑘 + 1) − 𝑘))) = (𝑌 · 1))
23862recnd 9947 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 ∈ ℂ)
239238mulid1d 9936 . . . . . 6 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝑌 · 1) = 𝑌)
240237, 239eqtr2d 2645 . . . . 5 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → 𝑌 = (𝑌 · (abs‘((𝑘 + 1) − 𝑘))))
241196, 233, 2403brtr4d 4615 . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ 𝑌)
2422, 60, 62, 241fsumle 14372 . . 3 (𝜑 → Σ𝑘 ∈ (𝑀..^𝑁)(abs‘(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
24359, 61, 63, 64, 242letrd 10073 . 2 (𝜑 → (abs‘Σ𝑘 ∈ (𝑀..^𝑁)(𝑋 − ((𝑘 + 1) / 𝑥𝐴𝑘 / 𝑥𝐴))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
24456, 243eqbrtrrd 4607 1 (𝜑 → (abs‘(Σ𝑘 ∈ (𝑀..^𝑁)𝑋 − (𝐷𝐶))) ≤ Σ𝑘 ∈ (𝑀..^𝑁)𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  csb 3499  cin 3539  wss 3540  {cpr 4127   class class class wbr 4583  cmpt 4643  dom cdm 5038  ran crn 5039  cres 5040  wf 5800  cfv 5804  (class class class)co 6549  Fincfn 7841  cc 9813  cr 9814  1c1 9816   + caddc 9818   · cmul 9820  *cxr 9952  cle 9954  cmin 10145  cz 11254  cuz 11563  (,)cioo 12046  [,]cicc 12049  ...cfz 12197  ..^cfzo 12334  abscabs 13822  Σcsu 14264  TopOpenctopn 15905  topGenctg 15921  fldccnfld 19567  intcnt 20631   Cn ccn 20838   ×t ctx 21173  cnccncf 22487   D cdv 23433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-fbas 19564  df-fg 19565  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cld 20633  df-ntr 20634  df-cls 20635  df-nei 20712  df-lp 20750  df-perf 20751  df-cn 20841  df-cnp 20842  df-haus 20929  df-cmp 21000  df-tx 21175  df-hmeo 21368  df-fil 21460  df-fm 21552  df-flim 21553  df-flf 21554  df-xms 21935  df-ms 21936  df-tms 21937  df-cncf 22489  df-limc 23436  df-dv 23437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator