MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccss Structured version   Unicode version

Theorem iccss 11368
Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
iccss  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  C  /\  D  <_  B
) )  ->  ( C [,] D )  C_  ( A [,] B ) )

Proof of Theorem iccss
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexr 9434 . . 3  |-  ( A  e.  RR  ->  A  e.  RR* )
2 rexr 9434 . . 3  |-  ( B  e.  RR  ->  B  e.  RR* )
31, 2anim12i 566 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  e.  RR*  /\  B  e.  RR* )
)
4 df-icc 11312 . . 3  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
5 xrletr 11137 . . 3  |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e. 
RR* )  ->  (
( A  <_  C  /\  C  <_  w )  ->  A  <_  w
) )
6 xrletr 11137 . . 3  |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e. 
RR* )  ->  (
( w  <_  D  /\  D  <_  B )  ->  w  <_  B
) )
74, 4, 5, 6ixxss12 11325 . 2  |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <_  C  /\  D  <_  B ) )  ->  ( C [,] D )  C_  ( A [,] B ) )
83, 7sylan 471 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  C  /\  D  <_  B
) )  ->  ( C [,] D )  C_  ( A [,] B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1756    C_ wss 3333   class class class wbr 4297  (class class class)co 6096   RRcr 9286   RR*cxr 9422    <_ cle 9424   [,]cicc 11308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377  ax-cnex 9343  ax-resscn 9344  ax-pre-lttri 9361  ax-pre-lttrn 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-id 4641  df-po 4646  df-so 4647  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-1st 6582  df-2nd 6583  df-er 7106  df-en 7316  df-dom 7317  df-sdom 7318  df-pnf 9425  df-mnf 9426  df-xr 9427  df-ltxr 9428  df-le 9429  df-icc 11312
This theorem is referenced by:  xrhmeo  20523  lebnumii  20543  pcoval1  20590  pcoval2  20593  ivthicc  20947  dyaddisjlem  21080  volsup2  21090  volcn  21091  mbfi1fseqlem5  21202  dvcvx  21497  dvfsumle  21498  dvfsumabs  21500  harmonicbnd3  22406  ppisval  22446  chtwordi  22499  ppiwordi  22505  chpub  22564  cvmliftlem2  27180
  Copyright terms: Public domain W3C validator