Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismidb | Structured version Visualization version GIF version |
Description: Property of the midpoint. (Contributed by Thierry Arnoux, 1-Dec-2019.) |
Ref | Expression |
---|---|
ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
ismid.d | ⊢ − = (dist‘𝐺) |
ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
midcl.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
midcl.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
ismidb.s | ⊢ 𝑆 = (pInvG‘𝐺) |
ismidb.m | ⊢ (𝜑 → 𝑀 ∈ 𝑃) |
Ref | Expression |
---|---|
ismidb | ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismidb.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑃) | |
2 | ismid.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | ismid.d | . . . 4 ⊢ − = (dist‘𝐺) | |
4 | ismid.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | eqid 2610 | . . . 4 ⊢ (LineG‘𝐺) = (LineG‘𝐺) | |
6 | ismid.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | ismidb.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
8 | midcl.1 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
9 | midcl.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
10 | ismid.1 | . . . 4 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
11 | 2, 3, 4, 5, 6, 7, 8, 9, 10 | mideu 25430 | . . 3 ⊢ (𝜑 → ∃!𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) |
12 | fveq2 6103 | . . . . . 6 ⊢ (𝑚 = 𝑀 → (𝑆‘𝑚) = (𝑆‘𝑀)) | |
13 | 12 | fveq1d 6105 | . . . . 5 ⊢ (𝑚 = 𝑀 → ((𝑆‘𝑚)‘𝐴) = ((𝑆‘𝑀)‘𝐴)) |
14 | 13 | eqeq2d 2620 | . . . 4 ⊢ (𝑚 = 𝑀 → (𝐵 = ((𝑆‘𝑚)‘𝐴) ↔ 𝐵 = ((𝑆‘𝑀)‘𝐴))) |
15 | 14 | riota2 6533 | . . 3 ⊢ ((𝑀 ∈ 𝑃 ∧ ∃!𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) = 𝑀)) |
16 | 1, 11, 15 | syl2anc 691 | . 2 ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) = 𝑀)) |
17 | df-mid 25466 | . . . . . 6 ⊢ midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)))) | |
18 | 17 | a1i 11 | . . . . 5 ⊢ (𝜑 → midG = (𝑔 ∈ V ↦ (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))))) |
19 | fveq2 6103 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
20 | 19, 2 | syl6eqr 2662 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝑃) |
21 | fveq2 6103 | . . . . . . . . . . . 12 ⊢ (𝑔 = 𝐺 → (pInvG‘𝑔) = (pInvG‘𝐺)) | |
22 | 21, 7 | syl6eqr 2662 | . . . . . . . . . . 11 ⊢ (𝑔 = 𝐺 → (pInvG‘𝑔) = 𝑆) |
23 | 22 | fveq1d 6105 | . . . . . . . . . 10 ⊢ (𝑔 = 𝐺 → ((pInvG‘𝑔)‘𝑚) = (𝑆‘𝑚)) |
24 | 23 | fveq1d 6105 | . . . . . . . . 9 ⊢ (𝑔 = 𝐺 → (((pInvG‘𝑔)‘𝑚)‘𝑎) = ((𝑆‘𝑚)‘𝑎)) |
25 | 24 | eqeq2d 2620 | . . . . . . . 8 ⊢ (𝑔 = 𝐺 → (𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎) ↔ 𝑏 = ((𝑆‘𝑚)‘𝑎))) |
26 | 20, 25 | riotaeqbidv 6514 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎)) = (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎))) |
27 | 20, 20, 26 | mpt2eq123dv 6615 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)))) |
28 | 27 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑔 = 𝐺) → (𝑎 ∈ (Base‘𝑔), 𝑏 ∈ (Base‘𝑔) ↦ (℩𝑚 ∈ (Base‘𝑔)𝑏 = (((pInvG‘𝑔)‘𝑚)‘𝑎))) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)))) |
29 | elex 3185 | . . . . . 6 ⊢ (𝐺 ∈ TarskiG → 𝐺 ∈ V) | |
30 | 6, 29 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ V) |
31 | fvex 6113 | . . . . . . . 8 ⊢ (Base‘𝐺) ∈ V | |
32 | 2, 31 | eqeltri 2684 | . . . . . . 7 ⊢ 𝑃 ∈ V |
33 | 32, 32 | mpt2ex 7136 | . . . . . 6 ⊢ (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎))) ∈ V |
34 | 33 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎))) ∈ V) |
35 | 18, 28, 30, 34 | fvmptd 6197 | . . . 4 ⊢ (𝜑 → (midG‘𝐺) = (𝑎 ∈ 𝑃, 𝑏 ∈ 𝑃 ↦ (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)))) |
36 | simprr 792 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝑏 = 𝐵) | |
37 | simprl 790 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → 𝑎 = 𝐴) | |
38 | 37 | fveq2d 6107 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → ((𝑆‘𝑚)‘𝑎) = ((𝑆‘𝑚)‘𝐴)) |
39 | 36, 38 | eqeq12d 2625 | . . . . 5 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (𝑏 = ((𝑆‘𝑚)‘𝑎) ↔ 𝐵 = ((𝑆‘𝑚)‘𝐴))) |
40 | 39 | riotabidv 6513 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 = 𝐴 ∧ 𝑏 = 𝐵)) → (℩𝑚 ∈ 𝑃 𝑏 = ((𝑆‘𝑚)‘𝑎)) = (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴))) |
41 | riotacl 6525 | . . . . 5 ⊢ (∃!𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴) → (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) ∈ 𝑃) | |
42 | 11, 41 | syl 17 | . . . 4 ⊢ (𝜑 → (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) ∈ 𝑃) |
43 | 35, 40, 8, 9, 42 | ovmpt2d 6686 | . . 3 ⊢ (𝜑 → (𝐴(midG‘𝐺)𝐵) = (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴))) |
44 | 43 | eqeq1d 2612 | . 2 ⊢ (𝜑 → ((𝐴(midG‘𝐺)𝐵) = 𝑀 ↔ (℩𝑚 ∈ 𝑃 𝐵 = ((𝑆‘𝑚)‘𝐴)) = 𝑀)) |
45 | 16, 44 | bitr4d 270 | 1 ⊢ (𝜑 → (𝐵 = ((𝑆‘𝑀)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐵) = 𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 195 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∃!wreu 2898 Vcvv 3173 class class class wbr 4583 ↦ cmpt 4643 ‘cfv 5804 ℩crio 6510 (class class class)co 6549 ↦ cmpt2 6551 2c2 10947 Basecbs 15695 distcds 15777 TarskiGcstrkg 25129 DimTarskiG≥cstrkgld 25133 Itvcitv 25135 LineGclng 25136 pInvGcmir 25347 midGcmid 25464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-map 7746 df-pm 7747 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-card 8648 df-cda 8873 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-n0 11170 df-xnn0 11241 df-z 11255 df-uz 11564 df-fz 12198 df-fzo 12335 df-hash 12980 df-word 13154 df-concat 13156 df-s1 13157 df-s2 13444 df-s3 13445 df-trkgc 25147 df-trkgb 25148 df-trkgcb 25149 df-trkgld 25151 df-trkg 25152 df-cgrg 25206 df-leg 25278 df-mir 25348 df-rag 25389 df-perpg 25391 df-mid 25466 |
This theorem is referenced by: midbtwn 25471 midcgr 25472 midcom 25474 mirmid 25475 lmieu 25476 lmimid 25486 lmiisolem 25488 hypcgrlem1 25491 hypcgrlem2 25492 hypcgr 25493 trgcopyeulem 25497 |
Copyright terms: Public domain | W3C validator |