MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmieu Structured version   Visualization version   GIF version

Theorem lmieu 25476
Description: Uniqueness of the line mirror point. Theorem 10.2 of [Schwabhauser] p. 88. (Contributed by Thierry Arnoux, 1-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmieu.l 𝐿 = (LineG‘𝐺)
lmieu.1 (𝜑𝐷 ∈ ran 𝐿)
lmieu.a (𝜑𝐴𝑃)
Assertion
Ref Expression
lmieu (𝜑 → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
Distinct variable groups:   𝐺,𝑏   𝑃,𝑏   𝜑,𝑏   𝐴,𝑏   𝐷,𝑏   𝐿,𝑏
Allowed substitution hints:   𝐼(𝑏)   (𝑏)

Proof of Theorem lmieu
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 lmieu.a . . . 4 (𝜑𝐴𝑃)
21adantr 480 . . 3 ((𝜑𝐴𝐷) → 𝐴𝑃)
3 simpr 476 . . . . . . . . . . . 12 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → ¬ 𝐴 = 𝑏)
4 eqidd 2611 . . . . . . . . . . . . . . 15 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → (𝐴(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝑏))
5 ismid.p . . . . . . . . . . . . . . . 16 𝑃 = (Base‘𝐺)
6 ismid.d . . . . . . . . . . . . . . . 16 = (dist‘𝐺)
7 ismid.i . . . . . . . . . . . . . . . 16 𝐼 = (Itv‘𝐺)
8 ismid.g . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ TarskiG)
98ad4antr 764 . . . . . . . . . . . . . . . 16 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐺 ∈ TarskiG)
10 ismid.1 . . . . . . . . . . . . . . . . 17 (𝜑𝐺DimTarskiG≥2)
1110ad4antr 764 . . . . . . . . . . . . . . . 16 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐺DimTarskiG≥2)
122ad3antrrr 762 . . . . . . . . . . . . . . . 16 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐴𝑃)
13 simpllr 795 . . . . . . . . . . . . . . . 16 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝑏𝑃)
14 eqid 2610 . . . . . . . . . . . . . . . 16 (pInvG‘𝐺) = (pInvG‘𝐺)
155, 6, 7, 9, 11, 12, 13midcl 25469 . . . . . . . . . . . . . . . 16 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → (𝐴(midG‘𝐺)𝑏) ∈ 𝑃)
165, 6, 7, 9, 11, 12, 13, 14, 15ismidb 25470 . . . . . . . . . . . . . . 15 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → (𝑏 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝑏))‘𝐴) ↔ (𝐴(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝑏)))
174, 16mpbird 246 . . . . . . . . . . . . . 14 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝑏 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝑏))‘𝐴))
1817adantr 480 . . . . . . . . . . . . 13 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝑏 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝑏))‘𝐴))
19 lmieu.l . . . . . . . . . . . . . . . 16 𝐿 = (LineG‘𝐺)
209adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐺 ∈ TarskiG)
21 lmieu.1 . . . . . . . . . . . . . . . . . 18 (𝜑𝐷 ∈ ran 𝐿)
2221ad4antr 764 . . . . . . . . . . . . . . . . 17 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐷 ∈ ran 𝐿)
2322adantr 480 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐷 ∈ ran 𝐿)
2412adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴𝑃)
2513adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝑏𝑃)
263neqned 2789 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐴𝑏)
2726adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴𝑏)
285, 7, 19, 20, 24, 25, 27tgelrnln 25325 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (𝐴𝐿𝑏) ∈ ran 𝐿)
29 simpr 476 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐷 ≠ (𝐴𝐿𝑏))
30 simp-4r 803 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐴𝐷)
3130adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴𝐷)
325, 7, 19, 20, 24, 25, 27tglinerflx1 25328 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴 ∈ (𝐴𝐿𝑏))
3331, 32elind 3760 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴 ∈ (𝐷 ∩ (𝐴𝐿𝑏)))
34 simpllr 795 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (𝐴(midG‘𝐺)𝑏) ∈ 𝐷)
355, 6, 7, 9, 11, 12, 13midbtwn 25471 . . . . . . . . . . . . . . . . . . 19 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐴𝐼𝑏))
365, 7, 19, 9, 12, 13, 15, 26, 35btwnlng1 25314 . . . . . . . . . . . . . . . . . 18 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐴𝐿𝑏))
3736adantr 480 . . . . . . . . . . . . . . . . 17 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐴𝐿𝑏))
3834, 37elind 3760 . . . . . . . . . . . . . . . 16 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐷 ∩ (𝐴𝐿𝑏)))
395, 7, 19, 20, 23, 28, 29, 33, 38tglineineq 25338 . . . . . . . . . . . . . . 15 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴 = (𝐴(midG‘𝐺)𝑏))
4039fveq2d 6107 . . . . . . . . . . . . . 14 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → ((pInvG‘𝐺)‘𝐴) = ((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝑏)))
4140fveq1d 6105 . . . . . . . . . . . . 13 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (((pInvG‘𝐺)‘𝐴)‘𝐴) = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝑏))‘𝐴))
42 eqid 2610 . . . . . . . . . . . . . 14 ((pInvG‘𝐺)‘𝐴) = ((pInvG‘𝐺)‘𝐴)
435, 6, 7, 19, 14, 20, 24, 42mircinv 25363 . . . . . . . . . . . . 13 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → (((pInvG‘𝐺)‘𝐴)‘𝐴) = 𝐴)
4418, 41, 433eqtr2rd 2651 . . . . . . . . . . . 12 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷 ≠ (𝐴𝐿𝑏)) → 𝐴 = 𝑏)
453, 44mtand 689 . . . . . . . . . . 11 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → ¬ 𝐷 ≠ (𝐴𝐿𝑏))
468ad5antr 766 . . . . . . . . . . . 12 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → 𝐺 ∈ TarskiG)
4721ad5antr 766 . . . . . . . . . . . 12 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → 𝐷 ∈ ran 𝐿)
48 nne 2786 . . . . . . . . . . . . . . 15 𝐷 ≠ (𝐴𝐿𝑏) ↔ 𝐷 = (𝐴𝐿𝑏))
4945, 48sylib 207 . . . . . . . . . . . . . 14 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → 𝐷 = (𝐴𝐿𝑏))
5049adantr 480 . . . . . . . . . . . . 13 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → 𝐷 = (𝐴𝐿𝑏))
5150, 47eqeltrrd 2689 . . . . . . . . . . . 12 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → (𝐴𝐿𝑏) ∈ ran 𝐿)
52 simpr 476 . . . . . . . . . . . 12 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏))
535, 6, 7, 19, 46, 47, 51, 52perpneq 25409 . . . . . . . . . . 11 ((((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) ∧ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)) → 𝐷 ≠ (𝐴𝐿𝑏))
5445, 53mtand 689 . . . . . . . . . 10 (((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) ∧ ¬ 𝐴 = 𝑏) → ¬ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏))
5554ex 449 . . . . . . . . 9 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) → (¬ 𝐴 = 𝑏 → ¬ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
5655con4d 113 . . . . . . . 8 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) → 𝐴 = 𝑏))
57 idd 24 . . . . . . . 8 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) → (𝐴 = 𝑏𝐴 = 𝑏))
5856, 57jaod 394 . . . . . . 7 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ (𝐴(midG‘𝐺)𝑏) ∈ 𝐷) → ((𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏) → 𝐴 = 𝑏))
5958impr 647 . . . . . 6 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐴 = 𝑏)
6059eqcomd 2616 . . . . 5 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑏 = 𝐴)
61 simpr 476 . . . . . . . . 9 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → 𝑏 = 𝐴)
6261oveq2d 6565 . . . . . . . 8 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → (𝐴(midG‘𝐺)𝑏) = (𝐴(midG‘𝐺)𝐴))
635, 6, 7, 8, 10, 1, 1midid 25473 . . . . . . . . 9 (𝜑 → (𝐴(midG‘𝐺)𝐴) = 𝐴)
6463ad3antrrr 762 . . . . . . . 8 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → (𝐴(midG‘𝐺)𝐴) = 𝐴)
6562, 64eqtrd 2644 . . . . . . 7 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → (𝐴(midG‘𝐺)𝑏) = 𝐴)
66 simpllr 795 . . . . . . 7 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → 𝐴𝐷)
6765, 66eqeltrd 2688 . . . . . 6 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → (𝐴(midG‘𝐺)𝑏) ∈ 𝐷)
6861eqcomd 2616 . . . . . . 7 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → 𝐴 = 𝑏)
6968olcd 407 . . . . . 6 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))
7067, 69jca 553 . . . . 5 ((((𝜑𝐴𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = 𝐴) → ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
7160, 70impbida 873 . . . 4 (((𝜑𝐴𝐷) ∧ 𝑏𝑃) → (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = 𝐴))
7271ralrimiva 2949 . . 3 ((𝜑𝐴𝐷) → ∀𝑏𝑃 (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = 𝐴))
73 reu6i 3364 . . 3 ((𝐴𝑃 ∧ ∀𝑏𝑃 (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = 𝐴)) → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
742, 72, 73syl2anc 691 . 2 ((𝜑𝐴𝐷) → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
758adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐺 ∈ TarskiG)
7675ad2antrr 758 . . . . 5 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → 𝐺 ∈ TarskiG)
7721adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐷 ∈ ran 𝐿)
7877ad2antrr 758 . . . . . 6 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → 𝐷 ∈ ran 𝐿)
79 simplr 788 . . . . . 6 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → 𝑥𝐷)
805, 19, 7, 76, 78, 79tglnpt 25244 . . . . 5 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → 𝑥𝑃)
81 eqid 2610 . . . . 5 ((pInvG‘𝐺)‘𝑥) = ((pInvG‘𝐺)‘𝑥)
821adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐴𝐷) → 𝐴𝑃)
8382ad2antrr 758 . . . . 5 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → 𝐴𝑃)
845, 6, 7, 19, 14, 76, 80, 81, 83mircl 25356 . . . 4 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → (((pInvG‘𝐺)‘𝑥)‘𝐴) ∈ 𝑃)
85 oveq2 6557 . . . . . . . . . 10 (𝑥 = (𝐴(midG‘𝐺)𝑏) → (𝐴𝐿𝑥) = (𝐴𝐿(𝐴(midG‘𝐺)𝑏)))
8685breq1d 4593 . . . . . . . . 9 (𝑥 = (𝐴(midG‘𝐺)𝑏) → ((𝐴𝐿𝑥)(⟂G‘𝐺)𝐷 ↔ (𝐴𝐿(𝐴(midG‘𝐺)𝑏))(⟂G‘𝐺)𝐷))
87 simprl 790 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) ∈ 𝐷)
88 simpr 476 . . . . . . . . . . . 12 ((𝜑 ∧ ¬ 𝐴𝐷) → ¬ 𝐴𝐷)
895, 6, 7, 19, 75, 77, 82, 88foot 25414 . . . . . . . . . . 11 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃!𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
90 reurmo 3138 . . . . . . . . . . 11 (∃!𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷 → ∃*𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
9189, 90syl 17 . . . . . . . . . 10 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃*𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
9291ad4antr 764 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → ∃*𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
9379ad2antrr 758 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑥𝐷)
94 simpllr 795 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
9576ad2antrr 758 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐺 ∈ TarskiG)
9683ad2antrr 758 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐴𝑃)
97 simplr 788 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑏𝑃)
9810ad5antr 766 . . . . . . . . . . . . 13 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐺DimTarskiG≥2)
995, 6, 7, 95, 98, 96, 97midcl 25469 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) ∈ 𝑃)
1005, 6, 7, 95, 98, 96, 97midbtwn 25471 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐴𝐼𝑏))
10188ad4antr 764 . . . . . . . . . . . . 13 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → ¬ 𝐴𝐷)
102 nelne2 2879 . . . . . . . . . . . . 13 (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ ¬ 𝐴𝐷) → (𝐴(midG‘𝐺)𝑏) ≠ 𝐴)
10387, 101, 102syl2anc 691 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) ≠ 𝐴)
1045, 6, 7, 95, 96, 99, 97, 100, 103tgbtwnne 25185 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐴𝑏)
1055, 7, 19, 95, 96, 97, 99, 104, 100btwnlng1 25314 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) ∈ (𝐴𝐿𝑏))
1065, 7, 19, 95, 96, 97, 104, 99, 103, 105tglineelsb2 25327 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴𝐿𝑏) = (𝐴𝐿(𝐴(midG‘𝐺)𝑏)))
10778ad2antrr 758 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐷 ∈ ran 𝐿)
1085, 7, 19, 95, 96, 97, 104tgelrnln 25325 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴𝐿𝑏) ∈ ran 𝐿)
109104neneqd 2787 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → ¬ 𝐴 = 𝑏)
110 simprr 792 . . . . . . . . . . . . . 14 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))
111110orcomd 402 . . . . . . . . . . . . 13 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴 = 𝑏𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
112111ord 391 . . . . . . . . . . . 12 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (¬ 𝐴 = 𝑏𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
113109, 112mpd 15 . . . . . . . . . . 11 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏))
1145, 6, 7, 19, 95, 107, 108, 113perpcom 25408 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴𝐿𝑏)(⟂G‘𝐺)𝐷)
115106, 114eqbrtrrd 4607 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴𝐿(𝐴(midG‘𝐺)𝑏))(⟂G‘𝐺)𝐷)
11686, 87, 92, 93, 94, 115rmoi2 3498 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑥 = (𝐴(midG‘𝐺)𝑏))
117116eqcomd 2616 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝐴(midG‘𝐺)𝑏) = 𝑥)
11880ad2antrr 758 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑥𝑃)
1195, 6, 7, 95, 98, 96, 97, 14, 118ismidb 25470 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → (𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴) ↔ (𝐴(midG‘𝐺)𝑏) = 𝑥))
120117, 119mpbird 246 . . . . . 6 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))) → 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴))
121 simpr 476 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴))
12276ad2antrr 758 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝐺 ∈ TarskiG)
12310ad5antr 766 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝐺DimTarskiG≥2)
12483ad2antrr 758 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝐴𝑃)
125 simplr 788 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝑏𝑃)
12680ad2antrr 758 . . . . . . . . . 10 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝑥𝑃)
1275, 6, 7, 122, 123, 124, 125, 14, 126ismidb 25470 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴) ↔ (𝐴(midG‘𝐺)𝑏) = 𝑥))
128121, 127mpbid 221 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (𝐴(midG‘𝐺)𝑏) = 𝑥)
12979ad2antrr 758 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → 𝑥𝐷)
130128, 129eqeltrd 2688 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (𝐴(midG‘𝐺)𝑏) ∈ 𝐷)
131122adantr 480 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐺 ∈ TarskiG)
132 simp-4r 803 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
13319, 131, 132perpln1 25405 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → (𝐴𝐿𝑥) ∈ ran 𝐿)
13478ad3antrrr 762 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐷 ∈ ran 𝐿)
1355, 6, 7, 19, 131, 133, 134, 132perpcom 25408 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑥))
136124adantr 480 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐴𝑃)
137126adantr 480 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑥𝑃)
1385, 7, 19, 131, 136, 137, 133tglnne 25323 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐴𝑥)
139 simpllr 795 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑏𝑃)
140 simpr 476 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐴𝑏)
141140necomd 2837 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑏𝐴)
1425, 6, 7, 19, 14, 131, 137, 81, 136mirbtwn 25353 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑥 ∈ ((((pInvG‘𝐺)‘𝑥)‘𝐴)𝐼𝐴))
143 simplr 788 . . . . . . . . . . . . . . . 16 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴))
144143oveq1d 6564 . . . . . . . . . . . . . . 15 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → (𝑏𝐼𝐴) = ((((pInvG‘𝐺)‘𝑥)‘𝐴)𝐼𝐴))
145142, 144eleqtrrd 2691 . . . . . . . . . . . . . 14 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑥 ∈ (𝑏𝐼𝐴))
1465, 7, 19, 131, 139, 136, 137, 141, 145btwnlng1 25314 . . . . . . . . . . . . 13 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑥 ∈ (𝑏𝐿𝐴))
1475, 7, 19, 131, 136, 137, 139, 138, 146, 141lnrot1 25318 . . . . . . . . . . . 12 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝑏 ∈ (𝐴𝐿𝑥))
1485, 7, 19, 131, 136, 137, 138, 139, 141, 147tglineelsb2 25327 . . . . . . . . . . 11 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → (𝐴𝐿𝑥) = (𝐴𝐿𝑏))
149135, 148breqtrd 4609 . . . . . . . . . 10 (((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) ∧ 𝐴𝑏) → 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏))
150149ex 449 . . . . . . . . 9 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (𝐴𝑏𝐷(⟂G‘𝐺)(𝐴𝐿𝑏)))
151150necon1bd 2800 . . . . . . . 8 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (¬ 𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) → 𝐴 = 𝑏))
152151orrd 392 . . . . . . 7 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏))
153130, 152jca 553 . . . . . 6 ((((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) ∧ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)) → ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
154120, 153impbida 873 . . . . 5 (((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) ∧ 𝑏𝑃) → (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)))
155154ralrimiva 2949 . . . 4 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → ∀𝑏𝑃 (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴)))
156 reu6i 3364 . . . 4 (((((pInvG‘𝐺)‘𝑥)‘𝐴) ∈ 𝑃 ∧ ∀𝑏𝑃 (((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)) ↔ 𝑏 = (((pInvG‘𝐺)‘𝑥)‘𝐴))) → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
15784, 155, 156syl2anc 691 . . 3 ((((𝜑 ∧ ¬ 𝐴𝐷) ∧ 𝑥𝐷) ∧ (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷) → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
1585, 6, 7, 19, 75, 77, 82, 88footex 25413 . . 3 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃𝑥𝐷 (𝐴𝐿𝑥)(⟂G‘𝐺)𝐷)
159157, 158r19.29a 3060 . 2 ((𝜑 ∧ ¬ 𝐴𝐷) → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
16074, 159pm2.61dan 828 1 (𝜑 → ∃!𝑏𝑃 ((𝐴(midG‘𝐺)𝑏) ∈ 𝐷 ∧ (𝐷(⟂G‘𝐺)(𝐴𝐿𝑏) ∨ 𝐴 = 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  ∃!wreu 2898  ∃*wrmo 2899   class class class wbr 4583  ran crn 5039  cfv 5804  (class class class)co 6549  2c2 10947  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  DimTarskiGcstrkgld 25133  Itvcitv 25135  LineGclng 25136  pInvGcmir 25347  ⟂Gcperpg 25390  midGcmid 25464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkgld 25151  df-trkg 25152  df-cgrg 25206  df-leg 25278  df-mir 25348  df-rag 25389  df-perpg 25391  df-mid 25466
This theorem is referenced by:  lmif  25477  islmib  25479
  Copyright terms: Public domain W3C validator