MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hypcgrlem1 Structured version   Visualization version   GIF version

Theorem hypcgrlem1 25491
Description: Lemma for hypcgr 25493, case where triangles share a cathetus. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
hypcgr.p 𝑃 = (Base‘𝐺)
hypcgr.m = (dist‘𝐺)
hypcgr.i 𝐼 = (Itv‘𝐺)
hypcgr.g (𝜑𝐺 ∈ TarskiG)
hypcgr.h (𝜑𝐺DimTarskiG≥2)
hypcgr.a (𝜑𝐴𝑃)
hypcgr.b (𝜑𝐵𝑃)
hypcgr.c (𝜑𝐶𝑃)
hypcgr.d (𝜑𝐷𝑃)
hypcgr.e (𝜑𝐸𝑃)
hypcgr.f (𝜑𝐹𝑃)
hypcgr.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
hypcgr.2 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
hypcgr.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
hypcgr.4 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
hypcgrlem2.b (𝜑𝐵 = 𝐸)
hypcgrlem1.s 𝑆 = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
hypcgrlem1.a (𝜑𝐶 = 𝐹)
Assertion
Ref Expression
hypcgrlem1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))

Proof of Theorem hypcgrlem1
StepHypRef Expression
1 hypcgr.p . . 3 𝑃 = (Base‘𝐺)
2 hypcgr.m . . 3 = (dist‘𝐺)
3 hypcgr.i . . 3 𝐼 = (Itv‘𝐺)
4 hypcgr.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐺 ∈ TarskiG)
6 hypcgr.c . . . 4 (𝜑𝐶𝑃)
76adantr 480 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐶𝑃)
8 hypcgr.a . . . 4 (𝜑𝐴𝑃)
98adantr 480 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐴𝑃)
10 hypcgr.f . . . 4 (𝜑𝐹𝑃)
1110adantr 480 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐹𝑃)
12 hypcgr.d . . . 4 (𝜑𝐷𝑃)
1312adantr 480 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐷𝑃)
14 eqid 2610 . . . . . . 7 (LineG‘𝐺) = (LineG‘𝐺)
15 eqid 2610 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
16 hypcgr.b . . . . . . 7 (𝜑𝐵𝑃)
17 hypcgr.1 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
181, 2, 3, 14, 15, 4, 8, 16, 6, 17ragcom 25393 . . . . . 6 (𝜑 → ⟨“𝐶𝐵𝐴”⟩ ∈ (∟G‘𝐺))
191, 2, 3, 14, 15, 4, 6, 16, 8israg 25392 . . . . . 6 (𝜑 → (⟨“𝐶𝐵𝐴”⟩ ∈ (∟G‘𝐺) ↔ (𝐶 𝐴) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴))))
2018, 19mpbid 221 . . . . 5 (𝜑 → (𝐶 𝐴) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴)))
2120adantr 480 . . . 4 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐶 𝐴) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴)))
22 hypcgrlem1.a . . . . . . 7 (𝜑𝐶 = 𝐹)
2322eqcomd 2616 . . . . . 6 (𝜑𝐹 = 𝐶)
2423adantr 480 . . . . 5 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐹 = 𝐶)
25 hypcgr.h . . . . . . 7 (𝜑𝐺DimTarskiG≥2)
261, 2, 3, 4, 25, 8, 12, 15, 16ismidb 25470 . . . . . 6 (𝜑 → (𝐷 = (((pInvG‘𝐺)‘𝐵)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐷) = 𝐵))
2726biimpar 501 . . . . 5 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐷 = (((pInvG‘𝐺)‘𝐵)‘𝐴))
2824, 27oveq12d 6567 . . . 4 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐹 𝐷) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴)))
2921, 28eqtr4d 2647 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐶 𝐴) = (𝐹 𝐷))
301, 2, 3, 5, 7, 9, 11, 13, 29tgcgrcomlr 25175 . 2 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
31 simpr 476 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → 𝐴 = 𝐷)
3222ad2antrr 758 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → 𝐶 = 𝐹)
3331, 32oveq12d 6567 . . 3 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → (𝐴 𝐶) = (𝐷 𝐹))
3417ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
354ad2antrr 758 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐺 ∈ TarskiG)
368ad2antrr 758 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴𝑃)
3716ad2antrr 758 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐵𝑃)
386ad2antrr 758 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐶𝑃)
391, 2, 3, 14, 15, 35, 36, 37, 38israg 25392 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 (((pInvG‘𝐺)‘𝐵)‘𝐶))))
4034, 39mpbid 221 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 𝐶) = (𝐴 (((pInvG‘𝐺)‘𝐵)‘𝐶)))
4125ad2antrr 758 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐺DimTarskiG≥2)
42 hypcgrlem1.s . . . . . . 7 𝑆 = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
4312ad2antrr 758 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐷𝑃)
441, 2, 3, 35, 41, 36, 43midcl 25469 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ 𝑃)
45 simplr 788 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ≠ 𝐵)
461, 3, 14, 35, 44, 37, 45tgelrnln 25325 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∈ ran (LineG‘𝐺))
47 eqid 2610 . . . . . . 7 ((pInvG‘𝐺)‘𝐵) = ((pInvG‘𝐺)‘𝐵)
48 eqid 2610 . . . . . . . . 9 (cgrG‘𝐺) = (cgrG‘𝐺)
491, 2, 3, 14, 15, 35, 37, 47, 38mircl 25356 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (((pInvG‘𝐺)‘𝐵)‘𝐶) ∈ 𝑃)
50 simpr 476 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴𝐷)
511, 2, 3, 35, 41, 36, 43midbtwn 25471 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐴𝐼𝐷))
521, 14, 3, 35, 36, 44, 43, 51btwncolg3 25252 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 ∈ (𝐴(LineG‘𝐺)(𝐴(midG‘𝐺)𝐷)) ∨ 𝐴 = (𝐴(midG‘𝐺)𝐷)))
53 eqidd 2611 . . . . . . . . . . . . 13 (𝜑𝐷 = 𝐷)
54 hypcgrlem2.b . . . . . . . . . . . . 13 (𝜑𝐵 = 𝐸)
5553, 54, 22s3eqd 13460 . . . . . . . . . . . 12 (𝜑 → ⟨“𝐷𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩)
5655ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐷𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩)
57 hypcgr.2 . . . . . . . . . . . 12 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
5857ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
5956, 58eqeltrd 2688 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐷𝐵𝐶”⟩ ∈ (∟G‘𝐺))
601, 2, 3, 14, 15, 35, 43, 37, 38israg 25392 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“𝐷𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐷 𝐶) = (𝐷 (((pInvG‘𝐺)‘𝐵)‘𝐶))))
6159, 60mpbid 221 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 𝐶) = (𝐷 (((pInvG‘𝐺)‘𝐵)‘𝐶)))
621, 14, 3, 35, 36, 43, 44, 48, 38, 49, 2, 50, 52, 40, 61lncgr 25264 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝐴(midG‘𝐺)𝐷) 𝐶) = ((𝐴(midG‘𝐺)𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐶)))
631, 2, 3, 14, 15, 35, 44, 37, 38israg 25392 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“(𝐴(midG‘𝐺)𝐷)𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ ((𝐴(midG‘𝐺)𝐷) 𝐶) = ((𝐴(midG‘𝐺)𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐶))))
6462, 63mpbird 246 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“(𝐴(midG‘𝐺)𝐷)𝐵𝐶”⟩ ∈ (∟G‘𝐺))
651, 3, 14, 35, 44, 37, 45tglinerflx1 25328 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
661, 3, 14, 35, 44, 37, 45tglinerflx2 25329 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐵 ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
671, 2, 3, 35, 41, 42, 14, 46, 44, 47, 64, 65, 66, 38, 45lmimid 25486 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝑆𝐶) = (((pInvG‘𝐺)‘𝐵)‘𝐶))
6867oveq2d 6565 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 (𝑆𝐶)) = (𝐴 (((pInvG‘𝐺)‘𝐵)‘𝐶)))
6940, 68eqtr4d 2647 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 𝐶) = (𝐴 (𝑆𝐶)))
701, 2, 3, 35, 41, 43, 36midcom 25474 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷(midG‘𝐺)𝐴) = (𝐴(midG‘𝐺)𝐷))
7170, 65eqeltrd 2688 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷(midG‘𝐺)𝐴) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
7250necomd 2837 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐷𝐴)
731, 3, 14, 35, 43, 36, 72tgelrnln 25325 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷(LineG‘𝐺)𝐴) ∈ ran (LineG‘𝐺))
741, 2, 3, 35, 36, 44, 43, 51tgbtwncom 25183 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐷𝐼𝐴))
751, 3, 14, 35, 43, 36, 44, 72, 74btwnlng1 25314 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐷(LineG‘𝐺)𝐴))
7665, 75elind 3760 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∩ (𝐷(LineG‘𝐺)𝐴)))
771, 3, 14, 35, 43, 36, 72tglinerflx2 25329 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴 ∈ (𝐷(LineG‘𝐺)𝐴))
7845necomd 2837 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐵 ≠ (𝐴(midG‘𝐺)𝐷))
794ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐺 ∈ TarskiG)
808ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴𝑃)
8112ad2antrr 758 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐷𝑃)
8225ad2antrr 758 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐺DimTarskiG≥2)
83 simpr 476 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴 = (𝐴(midG‘𝐺)𝐷))
8483eqcomd 2616 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴(midG‘𝐺)𝐷) = 𝐴)
851, 2, 3, 79, 82, 80, 81, 84midcgr 25472 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴 𝐴) = (𝐴 𝐷))
8685eqcomd 2616 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴 𝐷) = (𝐴 𝐴))
871, 2, 3, 79, 80, 81, 80, 86axtgcgrid 25162 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴 = 𝐷)
8887ex 449 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴 = (𝐴(midG‘𝐺)𝐷) → 𝐴 = 𝐷))
8988necon3d 2803 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴𝐷𝐴 ≠ (𝐴(midG‘𝐺)𝐷)))
9089imp 444 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴 ≠ (𝐴(midG‘𝐺)𝐷))
91 hypcgr.e . . . . . . . . . . . . . 14 (𝜑𝐸𝑃)
92 hypcgr.3 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
931, 2, 3, 4, 8, 16, 12, 91, 92tgcgrcomlr 25175 . . . . . . . . . . . . 13 (𝜑 → (𝐵 𝐴) = (𝐸 𝐷))
9454oveq1d 6564 . . . . . . . . . . . . 13 (𝜑 → (𝐵 𝐷) = (𝐸 𝐷))
9593, 94eqtr4d 2647 . . . . . . . . . . . 12 (𝜑 → (𝐵 𝐴) = (𝐵 𝐷))
9695ad2antrr 758 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐵 𝐴) = (𝐵 𝐷))
97 eqidd 2611 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) = (𝐴(midG‘𝐺)𝐷))
981, 2, 3, 35, 41, 36, 43, 15, 44ismidb 25470 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴) ↔ (𝐴(midG‘𝐺)𝐷) = (𝐴(midG‘𝐺)𝐷)))
9997, 98mpbird 246 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐷 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴))
10099oveq2d 6565 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐵 𝐷) = (𝐵 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴)))
10196, 100eqtrd 2644 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐵 𝐴) = (𝐵 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴)))
1021, 2, 3, 14, 15, 35, 37, 44, 36israg 25392 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“𝐵(𝐴(midG‘𝐺)𝐷)𝐴”⟩ ∈ (∟G‘𝐺) ↔ (𝐵 𝐴) = (𝐵 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴))))
103101, 102mpbird 246 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐵(𝐴(midG‘𝐺)𝐷)𝐴”⟩ ∈ (∟G‘𝐺))
1041, 2, 3, 14, 35, 46, 73, 76, 66, 77, 78, 90, 103ragperp 25412 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴))
105104orcd 406 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴) ∨ 𝐷 = 𝐴))
1061, 2, 3, 35, 41, 42, 14, 46, 43, 36islmib 25479 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 = (𝑆𝐷) ↔ ((𝐷(midG‘𝐺)𝐴) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∧ (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴) ∨ 𝐷 = 𝐴))))
10771, 105, 106mpbir2and 959 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴 = (𝑆𝐷))
108107oveq1d 6564 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 (𝑆𝐶)) = ((𝑆𝐷) (𝑆𝐶)))
1091, 2, 3, 35, 41, 42, 14, 46, 43, 38lmiiso 25489 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝑆𝐷) (𝑆𝐶)) = (𝐷 𝐶))
11022oveq2d 6565 . . . . . 6 (𝜑 → (𝐷 𝐶) = (𝐷 𝐹))
111110ad2antrr 758 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 𝐶) = (𝐷 𝐹))
112108, 109, 1113eqtrd 2648 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 (𝑆𝐶)) = (𝐷 𝐹))
11369, 112eqtrd 2644 . . 3 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 𝐶) = (𝐷 𝐹))
11433, 113pm2.61dane 2869 . 2 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
11530, 114pm2.61dane 2869 1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  2c2 10947  ⟨“cs3 13438  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  DimTarskiGcstrkgld 25133  Itvcitv 25135  LineGclng 25136  cgrGccgrg 25205  pInvGcmir 25347  ∟Gcrag 25388  ⟂Gcperpg 25390  midGcmid 25464  lInvGclmi 25465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkgld 25151  df-trkg 25152  df-cgrg 25206  df-leg 25278  df-mir 25348  df-rag 25389  df-perpg 25391  df-mid 25466  df-lmi 25467
This theorem is referenced by:  hypcgrlem2  25492
  Copyright terms: Public domain W3C validator