MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hypcgrlem2 Structured version   Visualization version   GIF version

Theorem hypcgrlem2 25492
Description: Lemma for hypcgr 25493, case where triangles share one vertex 𝐵. (Contributed by Thierry Arnoux, 16-Dec-2019.)
Hypotheses
Ref Expression
hypcgr.p 𝑃 = (Base‘𝐺)
hypcgr.m = (dist‘𝐺)
hypcgr.i 𝐼 = (Itv‘𝐺)
hypcgr.g (𝜑𝐺 ∈ TarskiG)
hypcgr.h (𝜑𝐺DimTarskiG≥2)
hypcgr.a (𝜑𝐴𝑃)
hypcgr.b (𝜑𝐵𝑃)
hypcgr.c (𝜑𝐶𝑃)
hypcgr.d (𝜑𝐷𝑃)
hypcgr.e (𝜑𝐸𝑃)
hypcgr.f (𝜑𝐹𝑃)
hypcgr.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
hypcgr.2 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
hypcgr.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
hypcgr.4 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
hypcgrlem2.b (𝜑𝐵 = 𝐸)
hypcgrlem2.s 𝑆 = ((lInvG‘𝐺)‘((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
Assertion
Ref Expression
hypcgrlem2 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))

Proof of Theorem hypcgrlem2
StepHypRef Expression
1 hypcgr.p . . . 4 𝑃 = (Base‘𝐺)
2 hypcgr.m . . . 4 = (dist‘𝐺)
3 hypcgr.i . . . 4 𝐼 = (Itv‘𝐺)
4 hypcgr.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐺 ∈ TarskiG)
6 hypcgr.h . . . . 5 (𝜑𝐺DimTarskiG≥2)
76adantr 480 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐺DimTarskiG≥2)
8 hypcgr.a . . . . 5 (𝜑𝐴𝑃)
98adantr 480 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐴𝑃)
10 hypcgr.b . . . . 5 (𝜑𝐵𝑃)
1110adantr 480 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐵𝑃)
12 hypcgr.c . . . . 5 (𝜑𝐶𝑃)
1312adantr 480 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐶𝑃)
14 eqid 2610 . . . . 5 (LineG‘𝐺) = (LineG‘𝐺)
15 eqid 2610 . . . . 5 (pInvG‘𝐺) = (pInvG‘𝐺)
16 eqid 2610 . . . . 5 ((pInvG‘𝐺)‘𝐵) = ((pInvG‘𝐺)‘𝐵)
17 hypcgr.d . . . . . 6 (𝜑𝐷𝑃)
1817adantr 480 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐷𝑃)
191, 2, 3, 14, 15, 5, 11, 16, 18mircl 25356 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (((pInvG‘𝐺)‘𝐵)‘𝐷) ∈ 𝑃)
20 hypcgr.e . . . . 5 (𝜑𝐸𝑃)
2120adantr 480 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐸𝑃)
22 hypcgr.1 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
2322adantr 480 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
24 eqidd 2611 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (((pInvG‘𝐺)‘𝐵)‘𝐷) = (((pInvG‘𝐺)‘𝐵)‘𝐷))
25 hypcgrlem2.b . . . . . . . . 9 (𝜑𝐵 = 𝐸)
2625adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐵 = 𝐸)
271, 2, 3, 14, 15, 5, 11, 16, 21mirinv 25361 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐸) = 𝐸𝐵 = 𝐸))
2826, 27mpbird 246 . . . . . . 7 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (((pInvG‘𝐺)‘𝐵)‘𝐸) = 𝐸)
2928eqcomd 2616 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐸 = (((pInvG‘𝐺)‘𝐵)‘𝐸))
30 hypcgr.f . . . . . . . . . 10 (𝜑𝐹𝑃)
3130adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐹𝑃)
321, 2, 3, 5, 7, 13, 31midcom 25474 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐶(midG‘𝐺)𝐹) = (𝐹(midG‘𝐺)𝐶))
33 simpr 476 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐶(midG‘𝐺)𝐹) = 𝐵)
3432, 33eqtr3d 2646 . . . . . . 7 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐹(midG‘𝐺)𝐶) = 𝐵)
351, 2, 3, 5, 7, 31, 13, 15, 11ismidb 25470 . . . . . . 7 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐶 = (((pInvG‘𝐺)‘𝐵)‘𝐹) ↔ (𝐹(midG‘𝐺)𝐶) = 𝐵))
3634, 35mpbird 246 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐶 = (((pInvG‘𝐺)‘𝐵)‘𝐹))
3724, 29, 36s3eqd 13460 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)𝐸𝐶”⟩ = ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)(((pInvG‘𝐺)‘𝐵)‘𝐸)(((pInvG‘𝐺)‘𝐵)‘𝐹)”⟩)
38 hypcgr.2 . . . . . . 7 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
3938adantr 480 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
401, 2, 3, 14, 15, 5, 18, 21, 31, 39, 16, 11mirrag 25396 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)(((pInvG‘𝐺)‘𝐵)‘𝐸)(((pInvG‘𝐺)‘𝐵)‘𝐹)”⟩ ∈ (∟G‘𝐺))
4137, 40eqeltrd 2688 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)𝐸𝐶”⟩ ∈ (∟G‘𝐺))
42 hypcgr.3 . . . . . 6 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
4342adantr 480 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐵) = (𝐷 𝐸))
441, 2, 3, 14, 15, 5, 11, 16, 18, 21miriso 25365 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐸)) = (𝐷 𝐸))
4528oveq2d 6565 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐸)) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐸))
4643, 44, 453eqtr2d 2650 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐵) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐸))
4726oveq1d 6564 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐵 𝐶) = (𝐸 𝐶))
48 eqid 2610 . . . 4 ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(((pInvG‘𝐺)‘𝐵)‘𝐷))(LineG‘𝐺)𝐵)) = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(((pInvG‘𝐺)‘𝐵)‘𝐷))(LineG‘𝐺)𝐵))
49 eqidd 2611 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐶 = 𝐶)
501, 2, 3, 5, 7, 9, 11, 13, 19, 21, 13, 23, 41, 46, 47, 26, 48, 49hypcgrlem1 25491 . . 3 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐶) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐶))
5136oveq2d 6565 . . 3 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐶) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐹)))
521, 2, 3, 14, 15, 5, 11, 16, 18, 31miriso 25365 . . 3 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐹)) = (𝐷 𝐹))
5350, 51, 523eqtrd 2648 . 2 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
544ad2antrr 758 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐺 ∈ TarskiG)
556ad2antrr 758 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐺DimTarskiG≥2)
568ad2antrr 758 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐴𝑃)
5710ad2antrr 758 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐵𝑃)
5812ad2antrr 758 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐶𝑃)
5917ad2antrr 758 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐷𝑃)
6020ad2antrr 758 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐸𝑃)
6130ad2antrr 758 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐹𝑃)
6222ad2antrr 758 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
6338ad2antrr 758 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
6442ad2antrr 758 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → (𝐴 𝐵) = (𝐷 𝐸))
65 hypcgr.4 . . . . 5 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
6665ad2antrr 758 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → (𝐵 𝐶) = (𝐸 𝐹))
6725ad2antrr 758 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐵 = 𝐸)
68 eqid 2610 . . . 4 ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)) = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
69 simpr 476 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐶 = 𝐹)
701, 2, 3, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69hypcgrlem1 25491 . . 3 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → (𝐴 𝐶) = (𝐷 𝐹))
714ad2antrr 758 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐺 ∈ TarskiG)
726ad2antrr 758 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐺DimTarskiG≥2)
738ad2antrr 758 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐴𝑃)
7410ad2antrr 758 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵𝑃)
7512ad2antrr 758 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶𝑃)
76 hypcgrlem2.s . . . . . 6 𝑆 = ((lInvG‘𝐺)‘((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
7730ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐹𝑃)
781, 2, 3, 71, 72, 75, 77midcl 25469 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ 𝑃)
79 simplr 788 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ≠ 𝐵)
801, 3, 14, 71, 78, 74, 79tgelrnln 25325 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵) ∈ ran (LineG‘𝐺))
8117ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐷𝑃)
821, 2, 3, 71, 72, 76, 14, 80, 81lmicl 25478 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐷) ∈ 𝑃)
8320ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐸𝑃)
841, 2, 3, 71, 72, 76, 14, 80, 83lmicl 25478 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐸) ∈ 𝑃)
851, 2, 3, 71, 72, 76, 14, 80, 77lmicl 25478 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐹) ∈ 𝑃)
8622ad2antrr 758 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
871, 2, 3, 71, 72, 76, 14, 80lmimot 25490 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝑆 ∈ (𝐺Ismt𝐺))
8838ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
891, 2, 3, 14, 15, 71, 81, 83, 77, 87, 88motrag 25403 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“(𝑆𝐷)(𝑆𝐸)(𝑆𝐹)”⟩ ∈ (∟G‘𝐺))
9042ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐵) = (𝐷 𝐸))
911, 2, 3, 71, 72, 76, 14, 80, 81, 83lmiiso 25489 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝑆𝐷) (𝑆𝐸)) = (𝐷 𝐸))
9290, 91eqtr4d 2647 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐵) = ((𝑆𝐷) (𝑆𝐸)))
9365ad2antrr 758 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐵 𝐶) = (𝐸 𝐹))
941, 2, 3, 71, 72, 76, 14, 80, 83, 77lmiiso 25489 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝑆𝐸) (𝑆𝐹)) = (𝐸 𝐹))
9593, 94eqtr4d 2647 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐵 𝐶) = ((𝑆𝐸) (𝑆𝐹)))
961, 3, 14, 71, 78, 74, 79tglinerflx2 25329 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
971, 2, 3, 71, 72, 76, 14, 80, 74lmiinv 25484 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝑆𝐵) = 𝐵𝐵 ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵)))
9896, 97mpbird 246 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐵) = 𝐵)
9925ad2antrr 758 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 = 𝐸)
10099fveq2d 6107 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐵) = (𝑆𝐸))
10198, 100eqtr3d 2646 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 = (𝑆𝐸))
102 eqid 2610 . . . . 5 ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(𝑆𝐷))(LineG‘𝐺)𝐵)) = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(𝑆𝐷))(LineG‘𝐺)𝐵))
1031, 2, 3, 71, 72, 75, 77midcom 25474 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) = (𝐹(midG‘𝐺)𝐶))
1041, 3, 14, 71, 78, 74, 79tglinerflx1 25328 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
105103, 104eqeltrrd 2689 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐹(midG‘𝐺)𝐶) ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
106 simpr 476 . . . . . . . . . 10 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶𝐹)
107106necomd 2837 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐹𝐶)
1081, 3, 14, 71, 77, 75, 107tgelrnln 25325 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐹(LineG‘𝐺)𝐶) ∈ ran (LineG‘𝐺))
1091, 2, 3, 71, 72, 75, 77midbtwn 25471 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (𝐶𝐼𝐹))
1101, 2, 3, 71, 75, 78, 77, 109tgbtwncom 25183 . . . . . . . . . 10 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (𝐹𝐼𝐶))
1111, 3, 14, 71, 77, 75, 78, 107, 110btwnlng1 25314 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (𝐹(LineG‘𝐺)𝐶))
112104, 111elind 3760 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵) ∩ (𝐹(LineG‘𝐺)𝐶)))
1131, 3, 14, 71, 77, 75, 107tglinerflx2 25329 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶 ∈ (𝐹(LineG‘𝐺)𝐶))
11479necomd 2837 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 ≠ (𝐶(midG‘𝐺)𝐹))
1154ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐺 ∈ TarskiG)
11612ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐶𝑃)
11730ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐹𝑃)
1186ad2antrr 758 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐺DimTarskiG≥2)
119 simpr 476 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐶 = (𝐶(midG‘𝐺)𝐹))
120119eqcomd 2616 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → (𝐶(midG‘𝐺)𝐹) = 𝐶)
1211, 2, 3, 115, 118, 116, 117, 120midcgr 25472 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → (𝐶 𝐶) = (𝐶 𝐹))
122121eqcomd 2616 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → (𝐶 𝐹) = (𝐶 𝐶))
1231, 2, 3, 115, 116, 117, 116, 122axtgcgrid 25162 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐶 = 𝐹)
124123ex 449 . . . . . . . . . 10 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) → (𝐶 = (𝐶(midG‘𝐺)𝐹) → 𝐶 = 𝐹))
125124necon3d 2803 . . . . . . . . 9 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) → (𝐶𝐹𝐶 ≠ (𝐶(midG‘𝐺)𝐹)))
126125imp 444 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶 ≠ (𝐶(midG‘𝐺)𝐹))
12799eqcomd 2616 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐸 = 𝐵)
128 eqidd 2611 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) = (𝐶(midG‘𝐺)𝐹))
1291, 2, 3, 71, 72, 75, 77, 15, 78ismidb 25470 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐹 = (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶) ↔ (𝐶(midG‘𝐺)𝐹) = (𝐶(midG‘𝐺)𝐹)))
130128, 129mpbird 246 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐹 = (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶))
131127, 130oveq12d 6567 . . . . . . . . . 10 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐸 𝐹) = (𝐵 (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶)))
13293, 131eqtrd 2644 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐵 𝐶) = (𝐵 (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶)))
1331, 2, 3, 14, 15, 71, 74, 78, 75israg 25392 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (⟨“𝐵(𝐶(midG‘𝐺)𝐹)𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐵 𝐶) = (𝐵 (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶))))
134132, 133mpbird 246 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“𝐵(𝐶(midG‘𝐺)𝐹)𝐶”⟩ ∈ (∟G‘𝐺))
1351, 2, 3, 14, 71, 80, 108, 112, 96, 113, 114, 126, 134ragperp 25412 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐹(LineG‘𝐺)𝐶))
136135orcd 406 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐹(LineG‘𝐺)𝐶) ∨ 𝐹 = 𝐶))
1371, 2, 3, 71, 72, 76, 14, 80, 77, 75islmib 25479 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶 = (𝑆𝐹) ↔ ((𝐹(midG‘𝐺)𝐶) ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵) ∧ (((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐹(LineG‘𝐺)𝐶) ∨ 𝐹 = 𝐶))))
138105, 136, 137mpbir2and 959 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶 = (𝑆𝐹))
1391, 2, 3, 71, 72, 73, 74, 75, 82, 84, 85, 86, 89, 92, 95, 101, 102, 138hypcgrlem1 25491 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐶) = ((𝑆𝐷) (𝑆𝐹)))
1401, 2, 3, 71, 72, 76, 14, 80, 81, 77lmiiso 25489 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝑆𝐷) (𝑆𝐹)) = (𝐷 𝐹))
141139, 140eqtrd 2644 . . 3 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐶) = (𝐷 𝐹))
14270, 141pm2.61dane 2869 . 2 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
14353, 142pm2.61dane 2869 1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780   class class class wbr 4583  cfv 5804  (class class class)co 6549  2c2 10947  ⟨“cs3 13438  Basecbs 15695  distcds 15777  TarskiGcstrkg 25129  DimTarskiGcstrkgld 25133  Itvcitv 25135  LineGclng 25136  pInvGcmir 25347  ∟Gcrag 25388  ⟂Gcperpg 25390  midGcmid 25464  lInvGclmi 25465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-trkgc 25147  df-trkgb 25148  df-trkgcb 25149  df-trkgld 25151  df-trkg 25152  df-cgrg 25206  df-ismt 25228  df-leg 25278  df-mir 25348  df-rag 25389  df-perpg 25391  df-mid 25466  df-lmi 25467
This theorem is referenced by:  hypcgr  25493
  Copyright terms: Public domain W3C validator