Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  is1wlk Structured version   Visualization version   GIF version

Theorem is1wlk 40813
 Description: Properties of a pair of functions to be a 1-walk. (Contributed by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
1wlksfval.v 𝑉 = (Vtx‘𝐺)
1wlksfval.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
is1wlk ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(1Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
Distinct variable groups:   𝑘,𝐺   𝑘,𝐹   𝑃,𝑘
Allowed substitution hints:   𝑈(𝑘)   𝐼(𝑘)   𝑉(𝑘)   𝑊(𝑘)   𝑍(𝑘)

Proof of Theorem is1wlk
Dummy variables 𝑓 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4584 . . 3 (𝐹(1Walks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (1Walks‘𝐺))
2 1wlksfval.v . . . . . 6 𝑉 = (Vtx‘𝐺)
3 1wlksfval.i . . . . . 6 𝐼 = (iEdg‘𝐺)
42, 31wlksfval 40811 . . . . 5 (𝐺𝑊 → (1Walks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))})
543ad2ant1 1075 . . . 4 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (1Walks‘𝐺) = {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))})
65eleq2d 2673 . . 3 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ (1Walks‘𝐺) ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))}))
71, 6syl5bb 271 . 2 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(1Walks‘𝐺)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))}))
8 eleq1 2676 . . . . . 6 (𝑓 = 𝐹 → (𝑓 ∈ Word dom 𝐼𝐹 ∈ Word dom 𝐼))
98adantr 480 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓 ∈ Word dom 𝐼𝐹 ∈ Word dom 𝐼))
10 simpr 476 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → 𝑝 = 𝑃)
11 fveq2 6103 . . . . . . . 8 (𝑓 = 𝐹 → (#‘𝑓) = (#‘𝐹))
1211oveq2d 6565 . . . . . . 7 (𝑓 = 𝐹 → (0...(#‘𝑓)) = (0...(#‘𝐹)))
1312adantr 480 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (0...(#‘𝑓)) = (0...(#‘𝐹)))
1410, 13feq12d 5946 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑝:(0...(#‘𝑓))⟶𝑉𝑃:(0...(#‘𝐹))⟶𝑉))
1511oveq2d 6565 . . . . . . 7 (𝑓 = 𝐹 → (0..^(#‘𝑓)) = (0..^(#‘𝐹)))
1615adantr 480 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (0..^(#‘𝑓)) = (0..^(#‘𝐹)))
17 fveq1 6102 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝𝑘) = (𝑃𝑘))
18 fveq1 6102 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑝‘(𝑘 + 1)) = (𝑃‘(𝑘 + 1)))
1917, 18eqeq12d 2625 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑝𝑘) = (𝑝‘(𝑘 + 1)) ↔ (𝑃𝑘) = (𝑃‘(𝑘 + 1))))
2019adantl 481 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑝𝑘) = (𝑝‘(𝑘 + 1)) ↔ (𝑃𝑘) = (𝑃‘(𝑘 + 1))))
21 fveq1 6102 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑘) = (𝐹𝑘))
2221fveq2d 6107 . . . . . . . 8 (𝑓 = 𝐹 → (𝐼‘(𝑓𝑘)) = (𝐼‘(𝐹𝑘)))
2317sneqd 4137 . . . . . . . 8 (𝑝 = 𝑃 → {(𝑝𝑘)} = {(𝑃𝑘)})
2422, 23eqeqan12d 2626 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝐼‘(𝑓𝑘)) = {(𝑝𝑘)} ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}))
2517, 18preq12d 4220 . . . . . . . . 9 (𝑝 = 𝑃 → {(𝑝𝑘), (𝑝‘(𝑘 + 1))} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
2625adantl 481 . . . . . . . 8 ((𝑓 = 𝐹𝑝 = 𝑃) → {(𝑝𝑘), (𝑝‘(𝑘 + 1))} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
2722adantr 480 . . . . . . . 8 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝐼‘(𝑓𝑘)) = (𝐼‘(𝐹𝑘)))
2826, 27sseq12d 3597 . . . . . . 7 ((𝑓 = 𝐹𝑝 = 𝑃) → ({(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
2920, 24, 28ifpbi123d 1021 . . . . . 6 ((𝑓 = 𝐹𝑝 = 𝑃) → (if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
3016, 29raleqbidv 3129 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))) ↔ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
319, 14, 303anbi123d 1391 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘)))) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
3231opelopabga 4913 . . 3 ((𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
33323adant1 1072 . 2 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓 ∈ Word dom 𝐼𝑝:(0...(#‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝑓))if-((𝑝𝑘) = (𝑝‘(𝑘 + 1)), (𝐼‘(𝑓𝑘)) = {(𝑝𝑘)}, {(𝑝𝑘), (𝑝‘(𝑘 + 1))} ⊆ (𝐼‘(𝑓𝑘))))} ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
347, 33bitrd 267 1 ((𝐺𝑊𝐹𝑈𝑃𝑍) → (𝐹(1Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383  if-wif 1006   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896   ⊆ wss 3540  {csn 4125  {cpr 4127  ⟨cop 4131   class class class wbr 4583  {copab 4642  dom cdm 5038  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146  Vtxcvtx 25673  iEdgciedg 25674  1Walksc1wlks 40796 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-1wlks 40800 This theorem is referenced by:  is1wlkg  40816  2m1wlk  40818  1wlkvtxeledg  40828  1wlk1walk  40843  wlk1wlk  40846  upgr1wlkwlk  40847  1wlkres  40879  red1wlk  40881  1wlkp1  40890  1wlkd  40895  lfgrwlkprop  40896  2pthnloop  40937  crctcsh1wlkn0  41024  01wlk  41284
 Copyright terms: Public domain W3C validator