Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgr1wlkwlk Structured version   Visualization version   GIF version

Theorem upgr1wlkwlk 40847
Description: In a pseudograph, a 1-walk is a walk. (Contributed by AV, 30-Dec-2020.) (Proof shortened by AV, 2-Jan-2021.)
Assertion
Ref Expression
upgr1wlkwlk ((𝐺 ∈ UPGraph ∧ 𝐹(1Walks‘𝐺)𝑃) → 𝐹(UPWalks‘𝐺)𝑃)

Proof of Theorem upgr1wlkwlk
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkv 40815 . . 3 (𝐹(1Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2610 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2610 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3is1wlk 40813 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
5 simpr1 1060 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph ) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → 𝐹 ∈ Word dom (iEdg‘𝐺))
6 simpr2 1061 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph ) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺))
7 df-ifp 1007 . . . . . . . . . . . . . . . . 17 (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
8 dfsn2 4138 . . . . . . . . . . . . . . . . . . . . . . 23 {(𝑃𝑘)} = {(𝑃𝑘), (𝑃𝑘)}
9 preq2 4213 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → {(𝑃𝑘), (𝑃𝑘)} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
108, 9syl5eq 2656 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → {(𝑃𝑘)} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
1110eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
1211biimpa 500 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
1312a1d 25 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
14 simpr 476 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph ) → 𝐺 ∈ UPGraph )
15 simpl 472 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) → 𝐹 ∈ Word dom (iEdg‘𝐺))
16 eqid 2610 . . . . . . . . . . . . . . . . . . . . . . . 24 (Edg‘𝐺) = (Edg‘𝐺)
173, 16upgredginwlk 40840 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (𝑘 ∈ (0..^(#‘𝐹)) → ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)))
1814, 15, 17syl2anr 494 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) → (𝑘 ∈ (0..^(#‘𝐹)) → ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)))
1918imp 444 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺))
20 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) → 𝐺 ∈ UPGraph )
2120adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → 𝐺 ∈ UPGraph )
2221adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)) → 𝐺 ∈ UPGraph )
2322adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝐺 ∈ UPGraph )
24 simplr 788 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺))
25 simprr 792 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))
26 df-ne 2782 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)))
27 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑃𝑘) ∈ V
2827a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃𝑘) ∈ V)
29 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑃‘(𝑘 + 1)) ∈ V
3029a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘(𝑘 + 1)) ∈ V)
31 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
3228, 30, 313jca 1235 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3326, 32sylbir 224 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3433adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3534adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
362, 16upgredgpr 25815 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ UPGraph ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ∧ ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = ((iEdg‘𝐺)‘(𝐹𝑘)))
3723, 24, 25, 35, 36syl31anc 1321 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = ((iEdg‘𝐺)‘(𝐹𝑘)))
3837eqcomd 2616 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
3938exp31 628 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → (((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺) → ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
4019, 39mpd 15 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
4140com12 32 . . . . . . . . . . . . . . . . . . 19 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
4213, 41jaoi 393 . . . . . . . . . . . . . . . . . 18 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
4342com12 32 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
447, 43syl5bi 231 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) ∧ 𝑘 ∈ (0..^(#‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
4544ralimdva 2945 . . . . . . . . . . . . . . 15 (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph )) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
4645ex 449 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) → (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph ) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
4746com23 84 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph ) → ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
48473impia 1253 . . . . . . . . . . . 12 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph ) → ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
4948impcom 445 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph ) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
505, 6, 493jca 1235 . . . . . . . . . 10 ((((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph ) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
5150exp31 628 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐺 ∈ UPGraph → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))))
5251com23 84 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (𝐺 ∈ UPGraph → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))))
534, 52sylbid 229 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 → (𝐺 ∈ UPGraph → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))))
5453impd 446 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → ((𝐹(1Walks‘𝐺)𝑃𝐺 ∈ UPGraph ) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
5554impcom 445 . . . . 5 (((𝐹(1Walks‘𝐺)𝑃𝐺 ∈ UPGraph ) ∧ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
562, 3isWlk 40814 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
5756adantl 481 . . . . 5 (((𝐹(1Walks‘𝐺)𝑃𝐺 ∈ UPGraph ) ∧ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(#‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
5855, 57mpbird 246 . . . 4 (((𝐹(1Walks‘𝐺)𝑃𝐺 ∈ UPGraph ) ∧ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) → 𝐹(UPWalks‘𝐺)𝑃)
5958exp31 628 . . 3 (𝐹(1Walks‘𝐺)𝑃 → (𝐺 ∈ UPGraph → ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → 𝐹(UPWalks‘𝐺)𝑃)))
601, 59mpid 43 . 2 (𝐹(1Walks‘𝐺)𝑃 → (𝐺 ∈ UPGraph → 𝐹(UPWalks‘𝐺)𝑃))
6160impcom 445 1 ((𝐺 ∈ UPGraph ∧ 𝐹(1Walks‘𝐺)𝑃) → 𝐹(UPWalks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383  if-wif 1006  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wral 2896  Vcvv 3173  wss 3540  {csn 4125  {cpr 4127   class class class wbr 4583  dom cdm 5038  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146  Vtxcvtx 25673  iEdgciedg 25674   UPGraph cupgr 25747  Edgcedga 25792  1Walksc1wlks 40796  UPWalkscwlks 40797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-uhgr 25724  df-upgr 25749  df-edga 25793  df-1wlks 40800  df-wlks 40801
This theorem is referenced by:  upgr1wlkwlkb  40848
  Copyright terms: Public domain W3C validator