Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpbi123d Structured version   Visualization version   GIF version

Theorem ifpbi123d 1021
 Description: Equality deduction for conditional operator for propositions. (Contributed by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
ifpbi123d.1 (𝜑 → (𝜓𝜏))
ifpbi123d.2 (𝜑 → (𝜒𝜂))
ifpbi123d.3 (𝜑 → (𝜃𝜁))
Assertion
Ref Expression
ifpbi123d (𝜑 → (if-(𝜓, 𝜒, 𝜃) ↔ if-(𝜏, 𝜂, 𝜁)))

Proof of Theorem ifpbi123d
StepHypRef Expression
1 ifpbi123d.1 . . . 4 (𝜑 → (𝜓𝜏))
2 ifpbi123d.2 . . . 4 (𝜑 → (𝜒𝜂))
31, 2anbi12d 743 . . 3 (𝜑 → ((𝜓𝜒) ↔ (𝜏𝜂)))
41notbid 307 . . . 4 (𝜑 → (¬ 𝜓 ↔ ¬ 𝜏))
5 ifpbi123d.3 . . . 4 (𝜑 → (𝜃𝜁))
64, 5anbi12d 743 . . 3 (𝜑 → ((¬ 𝜓𝜃) ↔ (¬ 𝜏𝜁)))
73, 6orbi12d 742 . 2 (𝜑 → (((𝜓𝜒) ∨ (¬ 𝜓𝜃)) ↔ ((𝜏𝜂) ∨ (¬ 𝜏𝜁))))
8 df-ifp 1007 . 2 (if-(𝜓, 𝜒, 𝜃) ↔ ((𝜓𝜒) ∨ (¬ 𝜓𝜃)))
9 df-ifp 1007 . 2 (if-(𝜏, 𝜂, 𝜁) ↔ ((𝜏𝜂) ∨ (¬ 𝜏𝜁)))
107, 8, 93bitr4g 302 1 (𝜑 → (if-(𝜓, 𝜒, 𝜃) ↔ if-(𝜏, 𝜂, 𝜁)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383  if-wif 1006 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007 This theorem is referenced by:  1wlkslem1  40809  1wlkslem2  40810  1wlksfval  40811  is1wlk  40813  1wlkres  40879  red1wlk  40881  1wlkp1lem8  40889  crctcsh1wlkn0lem4  41016  crctcsh1wlkn0lem5  41017  crctcsh1wlkn0lem6  41018  11wlkdlem4  41307
 Copyright terms: Public domain W3C validator