Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1wlkres Structured version   Visualization version   GIF version

Theorem 1wlkres 40879
 Description: The restriction ⟨𝐻, 𝑄⟩ of a 1-walk ⟨𝐹, 𝑃⟩ to an initial segment of the 1-walk (of length 𝑁) forms a 1-walk on the subgraph 𝑆 consisting of the edges in the initial segment. Formerly proven directly for Eulerian paths, see eupthres 41383. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 5-Mar-2021.)
Hypotheses
Ref Expression
1wlkres.v 𝑉 = (Vtx‘𝐺)
1wlkres.i 𝐼 = (iEdg‘𝐺)
1wlkres.d (𝜑𝐹(1Walks‘𝐺)𝑃)
1wlkres.n (𝜑𝑁 ∈ (0..^(#‘𝐹)))
1wlkres.s (𝜑 → (Vtx‘𝑆) = 𝑉)
1wlkres.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
1wlkres.h 𝐻 = (𝐹 ↾ (0..^𝑁))
1wlkres.q 𝑄 = (𝑃 ↾ (0...𝑁))
Assertion
Ref Expression
1wlkres (𝜑𝐻(1Walks‘𝑆)𝑄)

Proof of Theorem 1wlkres
Dummy variables 𝑘 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1wlkres.h . . 3 𝐻 = (𝐹 ↾ (0..^𝑁))
2 1wlkres.d . . . . . . . 8 (𝜑𝐹(1Walks‘𝐺)𝑃)
3 1wlkres.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
431wlkf 40819 . . . . . . . 8 (𝐹(1Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
5 wrdfn 13174 . . . . . . . 8 (𝐹 ∈ Word dom 𝐼𝐹 Fn (0..^(#‘𝐹)))
62, 4, 53syl 18 . . . . . . 7 (𝜑𝐹 Fn (0..^(#‘𝐹)))
7 1wlkres.n . . . . . . . 8 (𝜑𝑁 ∈ (0..^(#‘𝐹)))
8 elfzouz2 12353 . . . . . . . 8 (𝑁 ∈ (0..^(#‘𝐹)) → (#‘𝐹) ∈ (ℤ𝑁))
9 fzoss2 12365 . . . . . . . 8 ((#‘𝐹) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(#‘𝐹)))
107, 8, 93syl 18 . . . . . . 7 (𝜑 → (0..^𝑁) ⊆ (0..^(#‘𝐹)))
11 fnssres 5918 . . . . . . 7 ((𝐹 Fn (0..^(#‘𝐹)) ∧ (0..^𝑁) ⊆ (0..^(#‘𝐹))) → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁))
126, 10, 11syl2anc 691 . . . . . 6 (𝜑 → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁))
13 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁))
14 fveq2 6103 . . . . . . . . . . . . . 14 (𝑖 = 𝑥 → (𝐹𝑖) = (𝐹𝑥))
1514eqeq1d 2612 . . . . . . . . . . . . 13 (𝑖 = 𝑥 → ((𝐹𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥) ↔ (𝐹𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥)))
1615adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0..^𝑁)) ∧ 𝑖 = 𝑥) → ((𝐹𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥) ↔ (𝐹𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥)))
17 fvres 6117 . . . . . . . . . . . . . 14 (𝑥 ∈ (0..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘𝑥) = (𝐹𝑥))
1817adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) = (𝐹𝑥))
1918eqcomd 2616 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝐹𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥))
2013, 16, 19rspcedvd 3289 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0..^𝑁)) → ∃𝑖 ∈ (0..^𝑁)(𝐹𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥))
216adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → 𝐹 Fn (0..^(#‘𝐹)))
2210adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (0..^𝑁) ⊆ (0..^(#‘𝐹)))
2321, 22fvelimabd 6164 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0..^𝑁)) → (((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ (𝐹 “ (0..^𝑁)) ↔ ∃𝑖 ∈ (0..^𝑁)(𝐹𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥)))
2420, 23mpbird 246 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ (𝐹 “ (0..^𝑁)))
252, 4syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ Word dom 𝐼)
26 wrdf 13165 . . . . . . . . . . . . . 14 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(#‘𝐹))⟶dom 𝐼)
2710sselda 3568 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^(#‘𝐹)))
28 ffvelrn 6265 . . . . . . . . . . . . . . . . . 18 ((𝐹:(0..^(#‘𝐹))⟶dom 𝐼𝑥 ∈ (0..^(#‘𝐹))) → (𝐹𝑥) ∈ dom 𝐼)
2928expcom 450 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0..^(#‘𝐹)) → (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → (𝐹𝑥) ∈ dom 𝐼))
3027, 29syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → (𝐹𝑥) ∈ dom 𝐼))
3130com12 32 . . . . . . . . . . . . . . 15 (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → ((𝜑𝑥 ∈ (0..^𝑁)) → (𝐹𝑥) ∈ dom 𝐼))
3231expd 451 . . . . . . . . . . . . . 14 (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐹𝑥) ∈ dom 𝐼)))
3326, 32syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ Word dom 𝐼 → (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐹𝑥) ∈ dom 𝐼)))
3425, 33mpcom 37 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐹𝑥) ∈ dom 𝐼))
3534imp 444 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝐹𝑥) ∈ dom 𝐼)
3618, 35eqeltrd 2688 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom 𝐼)
3724, 36elind 3760 . . . . . . . . 9 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼))
38 dmres 5339 . . . . . . . . 9 dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)
3937, 38syl6eleqr 2699 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
40 1wlkres.e . . . . . . . . . . 11 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
4140dmeqd 5248 . . . . . . . . . 10 (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
4241eleq2d 2673 . . . . . . . . 9 (𝜑 → (((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆) ↔ ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))))
4342adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^𝑁)) → (((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆) ↔ ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))))
4439, 43mpbird 246 . . . . . . 7 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆))
4544ralrimiva 2949 . . . . . 6 (𝜑 → ∀𝑥 ∈ (0..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆))
46 ffnfv 6295 . . . . . 6 ((𝐹 ↾ (0..^𝑁)):(0..^𝑁)⟶dom (iEdg‘𝑆) ↔ ((𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁) ∧ ∀𝑥 ∈ (0..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆)))
4712, 45, 46sylanbrc 695 . . . . 5 (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)⟶dom (iEdg‘𝑆))
48 fzossfz 12357 . . . . . . . . 9 (0..^(#‘𝐹)) ⊆ (0...(#‘𝐹))
4948, 7sseldi 3566 . . . . . . . 8 (𝜑𝑁 ∈ (0...(#‘𝐹)))
50 1wlkreslem0 40877 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝑁 ∈ (0...(#‘𝐹))) → (#‘(𝐹 ↾ (0..^𝑁))) = 𝑁)
5125, 49, 50syl2anc 691 . . . . . . 7 (𝜑 → (#‘(𝐹 ↾ (0..^𝑁))) = 𝑁)
5251oveq2d 6565 . . . . . 6 (𝜑 → (0..^(#‘(𝐹 ↾ (0..^𝑁)))) = (0..^𝑁))
5352feq2d 5944 . . . . 5 (𝜑 → ((𝐹 ↾ (0..^𝑁)):(0..^(#‘(𝐹 ↾ (0..^𝑁))))⟶dom (iEdg‘𝑆) ↔ (𝐹 ↾ (0..^𝑁)):(0..^𝑁)⟶dom (iEdg‘𝑆)))
5447, 53mpbird 246 . . . 4 (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^(#‘(𝐹 ↾ (0..^𝑁))))⟶dom (iEdg‘𝑆))
55 iswrdb 13166 . . . 4 ((𝐹 ↾ (0..^𝑁)) ∈ Word dom (iEdg‘𝑆) ↔ (𝐹 ↾ (0..^𝑁)):(0..^(#‘(𝐹 ↾ (0..^𝑁))))⟶dom (iEdg‘𝑆))
5654, 55sylibr 223 . . 3 (𝜑 → (𝐹 ↾ (0..^𝑁)) ∈ Word dom (iEdg‘𝑆))
571, 56syl5eqel 2692 . 2 (𝜑𝐻 ∈ Word dom (iEdg‘𝑆))
58 1wlkres.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
59581wlkp 40821 . . . . . . 7 (𝐹(1Walks‘𝐺)𝑃𝑃:(0...(#‘𝐹))⟶𝑉)
602, 59syl 17 . . . . . 6 (𝜑𝑃:(0...(#‘𝐹))⟶𝑉)
61 1wlkres.s . . . . . . 7 (𝜑 → (Vtx‘𝑆) = 𝑉)
6261feq3d 5945 . . . . . 6 (𝜑 → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝑆) ↔ 𝑃:(0...(#‘𝐹))⟶𝑉))
6360, 62mpbird 246 . . . . 5 (𝜑𝑃:(0...(#‘𝐹))⟶(Vtx‘𝑆))
64 elfzuz3 12210 . . . . . 6 (𝑁 ∈ (0...(#‘𝐹)) → (#‘𝐹) ∈ (ℤ𝑁))
65 fzss2 12252 . . . . . 6 ((#‘𝐹) ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...(#‘𝐹)))
6649, 64, 653syl 18 . . . . 5 (𝜑 → (0...𝑁) ⊆ (0...(#‘𝐹)))
6763, 66fssresd 5984 . . . 4 (𝜑 → (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆))
681fveq2i 6106 . . . . . . 7 (#‘𝐻) = (#‘(𝐹 ↾ (0..^𝑁)))
6968, 51syl5eq 2656 . . . . . 6 (𝜑 → (#‘𝐻) = 𝑁)
7069oveq2d 6565 . . . . 5 (𝜑 → (0...(#‘𝐻)) = (0...𝑁))
7170feq2d 5944 . . . 4 (𝜑 → ((𝑃 ↾ (0...𝑁)):(0...(#‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆)))
7267, 71mpbird 246 . . 3 (𝜑 → (𝑃 ↾ (0...𝑁)):(0...(#‘𝐻))⟶(Vtx‘𝑆))
73 1wlkres.q . . . 4 𝑄 = (𝑃 ↾ (0...𝑁))
7473feq1i 5949 . . 3 (𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...(#‘𝐻))⟶(Vtx‘𝑆))
7572, 74sylibr 223 . 2 (𝜑𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆))
76 wlkv 40815 . . . . . . 7 (𝐹(1Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
7758, 3is1wlk 40813 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
7877biimpd 218 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
7976, 78mpcom 37 . . . . . 6 (𝐹(1Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
802, 79syl 17 . . . . 5 (𝜑 → (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
8180adantr 480 . . . 4 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
8269oveq2d 6565 . . . . . . . . . . 11 (𝜑 → (0..^(#‘𝐻)) = (0..^𝑁))
8382eleq2d 2673 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0..^(#‘𝐻)) ↔ 𝑥 ∈ (0..^𝑁)))
8473fveq1i 6104 . . . . . . . . . . . . 13 (𝑄𝑥) = ((𝑃 ↾ (0...𝑁))‘𝑥)
85 fzossfz 12357 . . . . . . . . . . . . . . . 16 (0..^𝑁) ⊆ (0...𝑁)
8685a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (0..^𝑁) ⊆ (0...𝑁))
8786sselda 3568 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0...𝑁))
8887fvresd 6118 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘𝑥) = (𝑃𝑥))
8984, 88syl5req 2657 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝑃𝑥) = (𝑄𝑥))
9073fveq1i 6104 . . . . . . . . . . . . 13 (𝑄‘(𝑥 + 1)) = ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1))
91 fzofzp1 12431 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^𝑁) → (𝑥 + 1) ∈ (0...𝑁))
9291adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝑥 + 1) ∈ (0...𝑁))
9392fvresd 6118 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1)) = (𝑃‘(𝑥 + 1)))
9490, 93syl5req 2657 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))
9589, 94jca 553 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))
9695ex 449 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0..^𝑁) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))))
9783, 96sylbid 229 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0..^(#‘𝐻)) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))))
9897imp 444 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))
9925ancli 572 . . . . . . . . . . . . . 14 (𝜑 → (𝜑𝐹 ∈ Word dom 𝐼))
10026ffund 5962 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Word dom 𝐼 → Fun 𝐹)
101100adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ Word dom 𝐼) → Fun 𝐹)
102101adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → Fun 𝐹)
103 fdm 5964 . . . . . . . . . . . . . . . . . 18 (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(#‘𝐹)))
104 sseq2 3590 . . . . . . . . . . . . . . . . . . 19 (dom 𝐹 = (0..^(#‘𝐹)) → ((0..^𝑁) ⊆ dom 𝐹 ↔ (0..^𝑁) ⊆ (0..^(#‘𝐹))))
10510, 104syl5ibr 235 . . . . . . . . . . . . . . . . . 18 (dom 𝐹 = (0..^(#‘𝐹)) → (𝜑 → (0..^𝑁) ⊆ dom 𝐹))
10626, 103, 1053syl 18 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Word dom 𝐼 → (𝜑 → (0..^𝑁) ⊆ dom 𝐹))
107106impcom 445 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ Word dom 𝐼) → (0..^𝑁) ⊆ dom 𝐹)
108107adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → (0..^𝑁) ⊆ dom 𝐹)
109 simpr 476 . . . . . . . . . . . . . . 15 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁))
110102, 108, 109resfvresima 6398 . . . . . . . . . . . . . 14 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹𝑥)))
11199, 110sylan 487 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹𝑥)))
112111eqcomd 2616 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))
113112ex 449 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))))
11483, 113sylbid 229 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0..^(#‘𝐻)) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))))
115114imp 444 . . . . . . . . 9 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))
11640adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
1171fveq1i 6104 . . . . . . . . . . 11 (𝐻𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥)
118117a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (𝐻𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥))
119116, 118fveq12d 6109 . . . . . . . . 9 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → ((iEdg‘𝑆)‘(𝐻𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))
120115, 119eqtr4d 2647 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥)))
12198, 120jca 553 . . . . . . 7 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))))
1227, 8syl 17 . . . . . . . . . . 11 (𝜑 → (#‘𝐹) ∈ (ℤ𝑁))
1231a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐻 = (𝐹 ↾ (0..^𝑁)))
124123fveq2d 6107 . . . . . . . . . . . . 13 (𝜑 → (#‘𝐻) = (#‘(𝐹 ↾ (0..^𝑁))))
125124, 51eqtrd 2644 . . . . . . . . . . . 12 (𝜑 → (#‘𝐻) = 𝑁)
126125fveq2d 6107 . . . . . . . . . . 11 (𝜑 → (ℤ‘(#‘𝐻)) = (ℤ𝑁))
127122, 126eleqtrrd 2691 . . . . . . . . . 10 (𝜑 → (#‘𝐹) ∈ (ℤ‘(#‘𝐻)))
128 fzoss2 12365 . . . . . . . . . 10 ((#‘𝐹) ∈ (ℤ‘(#‘𝐻)) → (0..^(#‘𝐻)) ⊆ (0..^(#‘𝐹)))
129127, 128syl 17 . . . . . . . . 9 (𝜑 → (0..^(#‘𝐻)) ⊆ (0..^(#‘𝐹)))
130129sselda 3568 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → 𝑥 ∈ (0..^(#‘𝐹)))
131 1wlkslem1 40809 . . . . . . . . 9 (𝑘 = 𝑥 → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)))))
132131rspcv 3278 . . . . . . . 8 (𝑥 ∈ (0..^(#‘𝐹)) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)))))
133130, 132syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)))))
134 eqeq12 2623 . . . . . . . . . 10 (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → ((𝑃𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄𝑥) = (𝑄‘(𝑥 + 1))))
135134adantr 480 . . . . . . . . 9 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → ((𝑃𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄𝑥) = (𝑄‘(𝑥 + 1))))
136 simpr 476 . . . . . . . . . 10 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥)))
137 sneq 4135 . . . . . . . . . . . 12 ((𝑃𝑥) = (𝑄𝑥) → {(𝑃𝑥)} = {(𝑄𝑥)})
138137adantr 480 . . . . . . . . . . 11 (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃𝑥)} = {(𝑄𝑥)})
139138adantr 480 . . . . . . . . . 10 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → {(𝑃𝑥)} = {(𝑄𝑥)})
140136, 139eqeq12d 2625 . . . . . . . . 9 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥)} ↔ ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}))
141 preq12 4214 . . . . . . . . . . 11 (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄𝑥), (𝑄‘(𝑥 + 1))})
142141adantr 480 . . . . . . . . . 10 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄𝑥), (𝑄‘(𝑥 + 1))})
143142, 136sseq12d 3597 . . . . . . . . 9 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)) ↔ {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))
144135, 140, 143ifpbi123d 1021 . . . . . . . 8 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥))) ↔ if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
145144biimpd 218 . . . . . . 7 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
146121, 133, 145sylsyld 59 . . . . . 6 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
147146com12 32 . . . . 5 (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
1481473ad2ant3 1077 . . . 4 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
14981, 148mpcom 37 . . 3 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))
150149ralrimiva 2949 . 2 (𝜑 → ∀𝑥 ∈ (0..^(#‘𝐻))if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))
15158, 3, 2, 7, 61, 40, 1, 731wlkreslem 40878 . . 3 (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V))
152 eqid 2610 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
153 eqid 2610 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
154152, 153is1wlk 40813 . . 3 ((𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V) → (𝐻(1Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(#‘𝐻))if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))))
155151, 154syl 17 . 2 (𝜑 → (𝐻(1Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(#‘𝐻))if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))))
15657, 75, 150, 155mpbir3and 1238 1 (𝜑𝐻(1Walks‘𝑆)𝑄)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383  if-wif 1006   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  {csn 4125  {cpr 4127   class class class wbr 4583  dom cdm 5038   ↾ cres 5040   “ cima 5041  Fun wfun 5798   Fn wfn 5799  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  ℤ≥cuz 11563  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146  Vtxcvtx 25673  iEdgciedg 25674  1Walksc1wlks 40796 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-substr 13158  df-1wlks 40800 This theorem is referenced by:  trlres  40908  eupthres  41383
 Copyright terms: Public domain W3C validator