Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1wlkres Structured version   Visualization version   GIF version

Theorem 1wlkres 40879
Description: The restriction 𝐻, 𝑄 of a 1-walk 𝐹, 𝑃 to an initial segment of the 1-walk (of length 𝑁) forms a 1-walk on the subgraph 𝑆 consisting of the edges in the initial segment. Formerly proven directly for Eulerian paths, see eupthres 41383. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 5-Mar-2021.)
Hypotheses
Ref Expression
1wlkres.v 𝑉 = (Vtx‘𝐺)
1wlkres.i 𝐼 = (iEdg‘𝐺)
1wlkres.d (𝜑𝐹(1Walks‘𝐺)𝑃)
1wlkres.n (𝜑𝑁 ∈ (0..^(#‘𝐹)))
1wlkres.s (𝜑 → (Vtx‘𝑆) = 𝑉)
1wlkres.e (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
1wlkres.h 𝐻 = (𝐹 ↾ (0..^𝑁))
1wlkres.q 𝑄 = (𝑃 ↾ (0...𝑁))
Assertion
Ref Expression
1wlkres (𝜑𝐻(1Walks‘𝑆)𝑄)

Proof of Theorem 1wlkres
Dummy variables 𝑘 𝑖 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1wlkres.h . . 3 𝐻 = (𝐹 ↾ (0..^𝑁))
2 1wlkres.d . . . . . . . 8 (𝜑𝐹(1Walks‘𝐺)𝑃)
3 1wlkres.i . . . . . . . . 9 𝐼 = (iEdg‘𝐺)
431wlkf 40819 . . . . . . . 8 (𝐹(1Walks‘𝐺)𝑃𝐹 ∈ Word dom 𝐼)
5 wrdfn 13174 . . . . . . . 8 (𝐹 ∈ Word dom 𝐼𝐹 Fn (0..^(#‘𝐹)))
62, 4, 53syl 18 . . . . . . 7 (𝜑𝐹 Fn (0..^(#‘𝐹)))
7 1wlkres.n . . . . . . . 8 (𝜑𝑁 ∈ (0..^(#‘𝐹)))
8 elfzouz2 12353 . . . . . . . 8 (𝑁 ∈ (0..^(#‘𝐹)) → (#‘𝐹) ∈ (ℤ𝑁))
9 fzoss2 12365 . . . . . . . 8 ((#‘𝐹) ∈ (ℤ𝑁) → (0..^𝑁) ⊆ (0..^(#‘𝐹)))
107, 8, 93syl 18 . . . . . . 7 (𝜑 → (0..^𝑁) ⊆ (0..^(#‘𝐹)))
11 fnssres 5918 . . . . . . 7 ((𝐹 Fn (0..^(#‘𝐹)) ∧ (0..^𝑁) ⊆ (0..^(#‘𝐹))) → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁))
126, 10, 11syl2anc 691 . . . . . 6 (𝜑 → (𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁))
13 simpr 476 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁))
14 fveq2 6103 . . . . . . . . . . . . . 14 (𝑖 = 𝑥 → (𝐹𝑖) = (𝐹𝑥))
1514eqeq1d 2612 . . . . . . . . . . . . 13 (𝑖 = 𝑥 → ((𝐹𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥) ↔ (𝐹𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥)))
1615adantl 481 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (0..^𝑁)) ∧ 𝑖 = 𝑥) → ((𝐹𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥) ↔ (𝐹𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥)))
17 fvres 6117 . . . . . . . . . . . . . 14 (𝑥 ∈ (0..^𝑁) → ((𝐹 ↾ (0..^𝑁))‘𝑥) = (𝐹𝑥))
1817adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) = (𝐹𝑥))
1918eqcomd 2616 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝐹𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥))
2013, 16, 19rspcedvd 3289 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0..^𝑁)) → ∃𝑖 ∈ (0..^𝑁)(𝐹𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥))
216adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → 𝐹 Fn (0..^(#‘𝐹)))
2210adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (0..^𝑁) ⊆ (0..^(#‘𝐹)))
2321, 22fvelimabd 6164 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0..^𝑁)) → (((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ (𝐹 “ (0..^𝑁)) ↔ ∃𝑖 ∈ (0..^𝑁)(𝐹𝑖) = ((𝐹 ↾ (0..^𝑁))‘𝑥)))
2420, 23mpbird 246 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ (𝐹 “ (0..^𝑁)))
252, 4syl 17 . . . . . . . . . . . . 13 (𝜑𝐹 ∈ Word dom 𝐼)
26 wrdf 13165 . . . . . . . . . . . . . 14 (𝐹 ∈ Word dom 𝐼𝐹:(0..^(#‘𝐹))⟶dom 𝐼)
2710sselda 3568 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^(#‘𝐹)))
28 ffvelrn 6265 . . . . . . . . . . . . . . . . . 18 ((𝐹:(0..^(#‘𝐹))⟶dom 𝐼𝑥 ∈ (0..^(#‘𝐹))) → (𝐹𝑥) ∈ dom 𝐼)
2928expcom 450 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0..^(#‘𝐹)) → (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → (𝐹𝑥) ∈ dom 𝐼))
3027, 29syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → (𝐹𝑥) ∈ dom 𝐼))
3130com12 32 . . . . . . . . . . . . . . 15 (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → ((𝜑𝑥 ∈ (0..^𝑁)) → (𝐹𝑥) ∈ dom 𝐼))
3231expd 451 . . . . . . . . . . . . . 14 (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐹𝑥) ∈ dom 𝐼)))
3326, 32syl 17 . . . . . . . . . . . . 13 (𝐹 ∈ Word dom 𝐼 → (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐹𝑥) ∈ dom 𝐼)))
3425, 33mpcom 37 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐹𝑥) ∈ dom 𝐼))
3534imp 444 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝐹𝑥) ∈ dom 𝐼)
3618, 35eqeltrd 2688 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom 𝐼)
3724, 36elind 3760 . . . . . . . . 9 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼))
38 dmres 5339 . . . . . . . . 9 dom (𝐼 ↾ (𝐹 “ (0..^𝑁))) = ((𝐹 “ (0..^𝑁)) ∩ dom 𝐼)
3937, 38syl6eleqr 2699 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
40 1wlkres.e . . . . . . . . . . 11 (𝜑 → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
4140dmeqd 5248 . . . . . . . . . 10 (𝜑 → dom (iEdg‘𝑆) = dom (𝐼 ↾ (𝐹 “ (0..^𝑁))))
4241eleq2d 2673 . . . . . . . . 9 (𝜑 → (((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆) ↔ ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))))
4342adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^𝑁)) → (((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆) ↔ ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (𝐼 ↾ (𝐹 “ (0..^𝑁)))))
4439, 43mpbird 246 . . . . . . 7 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆))
4544ralrimiva 2949 . . . . . 6 (𝜑 → ∀𝑥 ∈ (0..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆))
46 ffnfv 6295 . . . . . 6 ((𝐹 ↾ (0..^𝑁)):(0..^𝑁)⟶dom (iEdg‘𝑆) ↔ ((𝐹 ↾ (0..^𝑁)) Fn (0..^𝑁) ∧ ∀𝑥 ∈ (0..^𝑁)((𝐹 ↾ (0..^𝑁))‘𝑥) ∈ dom (iEdg‘𝑆)))
4712, 45, 46sylanbrc 695 . . . . 5 (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^𝑁)⟶dom (iEdg‘𝑆))
48 fzossfz 12357 . . . . . . . . 9 (0..^(#‘𝐹)) ⊆ (0...(#‘𝐹))
4948, 7sseldi 3566 . . . . . . . 8 (𝜑𝑁 ∈ (0...(#‘𝐹)))
50 1wlkreslem0 40877 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐼𝑁 ∈ (0...(#‘𝐹))) → (#‘(𝐹 ↾ (0..^𝑁))) = 𝑁)
5125, 49, 50syl2anc 691 . . . . . . 7 (𝜑 → (#‘(𝐹 ↾ (0..^𝑁))) = 𝑁)
5251oveq2d 6565 . . . . . 6 (𝜑 → (0..^(#‘(𝐹 ↾ (0..^𝑁)))) = (0..^𝑁))
5352feq2d 5944 . . . . 5 (𝜑 → ((𝐹 ↾ (0..^𝑁)):(0..^(#‘(𝐹 ↾ (0..^𝑁))))⟶dom (iEdg‘𝑆) ↔ (𝐹 ↾ (0..^𝑁)):(0..^𝑁)⟶dom (iEdg‘𝑆)))
5447, 53mpbird 246 . . . 4 (𝜑 → (𝐹 ↾ (0..^𝑁)):(0..^(#‘(𝐹 ↾ (0..^𝑁))))⟶dom (iEdg‘𝑆))
55 iswrdb 13166 . . . 4 ((𝐹 ↾ (0..^𝑁)) ∈ Word dom (iEdg‘𝑆) ↔ (𝐹 ↾ (0..^𝑁)):(0..^(#‘(𝐹 ↾ (0..^𝑁))))⟶dom (iEdg‘𝑆))
5654, 55sylibr 223 . . 3 (𝜑 → (𝐹 ↾ (0..^𝑁)) ∈ Word dom (iEdg‘𝑆))
571, 56syl5eqel 2692 . 2 (𝜑𝐻 ∈ Word dom (iEdg‘𝑆))
58 1wlkres.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
59581wlkp 40821 . . . . . . 7 (𝐹(1Walks‘𝐺)𝑃𝑃:(0...(#‘𝐹))⟶𝑉)
602, 59syl 17 . . . . . 6 (𝜑𝑃:(0...(#‘𝐹))⟶𝑉)
61 1wlkres.s . . . . . . 7 (𝜑 → (Vtx‘𝑆) = 𝑉)
6261feq3d 5945 . . . . . 6 (𝜑 → (𝑃:(0...(#‘𝐹))⟶(Vtx‘𝑆) ↔ 𝑃:(0...(#‘𝐹))⟶𝑉))
6360, 62mpbird 246 . . . . 5 (𝜑𝑃:(0...(#‘𝐹))⟶(Vtx‘𝑆))
64 elfzuz3 12210 . . . . . 6 (𝑁 ∈ (0...(#‘𝐹)) → (#‘𝐹) ∈ (ℤ𝑁))
65 fzss2 12252 . . . . . 6 ((#‘𝐹) ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...(#‘𝐹)))
6649, 64, 653syl 18 . . . . 5 (𝜑 → (0...𝑁) ⊆ (0...(#‘𝐹)))
6763, 66fssresd 5984 . . . 4 (𝜑 → (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆))
681fveq2i 6106 . . . . . . 7 (#‘𝐻) = (#‘(𝐹 ↾ (0..^𝑁)))
6968, 51syl5eq 2656 . . . . . 6 (𝜑 → (#‘𝐻) = 𝑁)
7069oveq2d 6565 . . . . 5 (𝜑 → (0...(#‘𝐻)) = (0...𝑁))
7170feq2d 5944 . . . 4 (𝜑 → ((𝑃 ↾ (0...𝑁)):(0...(#‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...𝑁)⟶(Vtx‘𝑆)))
7267, 71mpbird 246 . . 3 (𝜑 → (𝑃 ↾ (0...𝑁)):(0...(#‘𝐻))⟶(Vtx‘𝑆))
73 1wlkres.q . . . 4 𝑄 = (𝑃 ↾ (0...𝑁))
7473feq1i 5949 . . 3 (𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆) ↔ (𝑃 ↾ (0...𝑁)):(0...(#‘𝐻))⟶(Vtx‘𝑆))
7572, 74sylibr 223 . 2 (𝜑𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆))
76 wlkv 40815 . . . . . . 7 (𝐹(1Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
7758, 3is1wlk 40813 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
7877biimpd 218 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
7976, 78mpcom 37 . . . . . 6 (𝐹(1Walks‘𝐺)𝑃 → (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
802, 79syl 17 . . . . 5 (𝜑 → (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
8180adantr 480 . . . 4 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
8269oveq2d 6565 . . . . . . . . . . 11 (𝜑 → (0..^(#‘𝐻)) = (0..^𝑁))
8382eleq2d 2673 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0..^(#‘𝐻)) ↔ 𝑥 ∈ (0..^𝑁)))
8473fveq1i 6104 . . . . . . . . . . . . 13 (𝑄𝑥) = ((𝑃 ↾ (0...𝑁))‘𝑥)
85 fzossfz 12357 . . . . . . . . . . . . . . . 16 (0..^𝑁) ⊆ (0...𝑁)
8685a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (0..^𝑁) ⊆ (0...𝑁))
8786sselda 3568 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0...𝑁))
8887fvresd 6118 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘𝑥) = (𝑃𝑥))
8984, 88syl5req 2657 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝑃𝑥) = (𝑄𝑥))
9073fveq1i 6104 . . . . . . . . . . . . 13 (𝑄‘(𝑥 + 1)) = ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1))
91 fzofzp1 12431 . . . . . . . . . . . . . . 15 (𝑥 ∈ (0..^𝑁) → (𝑥 + 1) ∈ (0...𝑁))
9291adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝑥 + 1) ∈ (0...𝑁))
9392fvresd 6118 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝑃 ↾ (0...𝑁))‘(𝑥 + 1)) = (𝑃‘(𝑥 + 1)))
9490, 93syl5req 2657 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))
9589, 94jca 553 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))
9695ex 449 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0..^𝑁) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))))
9783, 96sylbid 229 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0..^(#‘𝐻)) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1)))))
9897imp 444 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → ((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))))
9925ancli 572 . . . . . . . . . . . . . 14 (𝜑 → (𝜑𝐹 ∈ Word dom 𝐼))
10026ffund 5962 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Word dom 𝐼 → Fun 𝐹)
101100adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ Word dom 𝐼) → Fun 𝐹)
102101adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → Fun 𝐹)
103 fdm 5964 . . . . . . . . . . . . . . . . . 18 (𝐹:(0..^(#‘𝐹))⟶dom 𝐼 → dom 𝐹 = (0..^(#‘𝐹)))
104 sseq2 3590 . . . . . . . . . . . . . . . . . . 19 (dom 𝐹 = (0..^(#‘𝐹)) → ((0..^𝑁) ⊆ dom 𝐹 ↔ (0..^𝑁) ⊆ (0..^(#‘𝐹))))
10510, 104syl5ibr 235 . . . . . . . . . . . . . . . . . 18 (dom 𝐹 = (0..^(#‘𝐹)) → (𝜑 → (0..^𝑁) ⊆ dom 𝐹))
10626, 103, 1053syl 18 . . . . . . . . . . . . . . . . 17 (𝐹 ∈ Word dom 𝐼 → (𝜑 → (0..^𝑁) ⊆ dom 𝐹))
107106impcom 445 . . . . . . . . . . . . . . . 16 ((𝜑𝐹 ∈ Word dom 𝐼) → (0..^𝑁) ⊆ dom 𝐹)
108107adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → (0..^𝑁) ⊆ dom 𝐹)
109 simpr 476 . . . . . . . . . . . . . . 15 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → 𝑥 ∈ (0..^𝑁))
110102, 108, 109resfvresima 6398 . . . . . . . . . . . . . 14 (((𝜑𝐹 ∈ Word dom 𝐼) ∧ 𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹𝑥)))
11199, 110sylan 487 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (0..^𝑁)) → ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)) = (𝐼‘(𝐹𝑥)))
112111eqcomd 2616 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (0..^𝑁)) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))
113112ex 449 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0..^𝑁) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))))
11483, 113sylbid 229 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0..^(#‘𝐻)) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥))))
115114imp 444 . . . . . . . . 9 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (𝐼‘(𝐹𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))
11640adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (iEdg‘𝑆) = (𝐼 ↾ (𝐹 “ (0..^𝑁))))
1171fveq1i 6104 . . . . . . . . . . 11 (𝐻𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥)
118117a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (𝐻𝑥) = ((𝐹 ↾ (0..^𝑁))‘𝑥))
119116, 118fveq12d 6109 . . . . . . . . 9 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → ((iEdg‘𝑆)‘(𝐻𝑥)) = ((𝐼 ↾ (𝐹 “ (0..^𝑁)))‘((𝐹 ↾ (0..^𝑁))‘𝑥)))
120115, 119eqtr4d 2647 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥)))
12198, 120jca 553 . . . . . . 7 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))))
1227, 8syl 17 . . . . . . . . . . 11 (𝜑 → (#‘𝐹) ∈ (ℤ𝑁))
1231a1i 11 . . . . . . . . . . . . . 14 (𝜑𝐻 = (𝐹 ↾ (0..^𝑁)))
124123fveq2d 6107 . . . . . . . . . . . . 13 (𝜑 → (#‘𝐻) = (#‘(𝐹 ↾ (0..^𝑁))))
125124, 51eqtrd 2644 . . . . . . . . . . . 12 (𝜑 → (#‘𝐻) = 𝑁)
126125fveq2d 6107 . . . . . . . . . . 11 (𝜑 → (ℤ‘(#‘𝐻)) = (ℤ𝑁))
127122, 126eleqtrrd 2691 . . . . . . . . . 10 (𝜑 → (#‘𝐹) ∈ (ℤ‘(#‘𝐻)))
128 fzoss2 12365 . . . . . . . . . 10 ((#‘𝐹) ∈ (ℤ‘(#‘𝐻)) → (0..^(#‘𝐻)) ⊆ (0..^(#‘𝐹)))
129127, 128syl 17 . . . . . . . . 9 (𝜑 → (0..^(#‘𝐻)) ⊆ (0..^(#‘𝐹)))
130129sselda 3568 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → 𝑥 ∈ (0..^(#‘𝐹)))
131 1wlkslem1 40809 . . . . . . . . 9 (𝑘 = 𝑥 → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)))))
132131rspcv 3278 . . . . . . . 8 (𝑥 ∈ (0..^(#‘𝐹)) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)))))
133130, 132syl 17 . . . . . . 7 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)))))
134 eqeq12 2623 . . . . . . . . . 10 (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → ((𝑃𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄𝑥) = (𝑄‘(𝑥 + 1))))
135134adantr 480 . . . . . . . . 9 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → ((𝑃𝑥) = (𝑃‘(𝑥 + 1)) ↔ (𝑄𝑥) = (𝑄‘(𝑥 + 1))))
136 simpr 476 . . . . . . . . . 10 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥)))
137 sneq 4135 . . . . . . . . . . . 12 ((𝑃𝑥) = (𝑄𝑥) → {(𝑃𝑥)} = {(𝑄𝑥)})
138137adantr 480 . . . . . . . . . . 11 (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃𝑥)} = {(𝑄𝑥)})
139138adantr 480 . . . . . . . . . 10 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → {(𝑃𝑥)} = {(𝑄𝑥)})
140136, 139eqeq12d 2625 . . . . . . . . 9 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → ((𝐼‘(𝐹𝑥)) = {(𝑃𝑥)} ↔ ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}))
141 preq12 4214 . . . . . . . . . . 11 (((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄𝑥), (𝑄‘(𝑥 + 1))})
142141adantr 480 . . . . . . . . . 10 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → {(𝑃𝑥), (𝑃‘(𝑥 + 1))} = {(𝑄𝑥), (𝑄‘(𝑥 + 1))})
143142, 136sseq12d 3597 . . . . . . . . 9 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → ({(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥)) ↔ {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))
144135, 140, 143ifpbi123d 1021 . . . . . . . 8 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥))) ↔ if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
145144biimpd 218 . . . . . . 7 ((((𝑃𝑥) = (𝑄𝑥) ∧ (𝑃‘(𝑥 + 1)) = (𝑄‘(𝑥 + 1))) ∧ (𝐼‘(𝐹𝑥)) = ((iEdg‘𝑆)‘(𝐻𝑥))) → (if-((𝑃𝑥) = (𝑃‘(𝑥 + 1)), (𝐼‘(𝐹𝑥)) = {(𝑃𝑥)}, {(𝑃𝑥), (𝑃‘(𝑥 + 1))} ⊆ (𝐼‘(𝐹𝑥))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
146121, 133, 145sylsyld 59 . . . . . 6 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
147146com12 32 . . . . 5 (∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
1481473ad2ant3 1077 . . . 4 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(#‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(#‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥)))))
14981, 148mpcom 37 . . 3 ((𝜑𝑥 ∈ (0..^(#‘𝐻))) → if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))
150149ralrimiva 2949 . 2 (𝜑 → ∀𝑥 ∈ (0..^(#‘𝐻))if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))
15158, 3, 2, 7, 61, 40, 1, 731wlkreslem 40878 . . 3 (𝜑 → (𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V))
152 eqid 2610 . . . 4 (Vtx‘𝑆) = (Vtx‘𝑆)
153 eqid 2610 . . . 4 (iEdg‘𝑆) = (iEdg‘𝑆)
154152, 153is1wlk 40813 . . 3 ((𝑆 ∈ V ∧ 𝐻 ∈ V ∧ 𝑄 ∈ V) → (𝐻(1Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(#‘𝐻))if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))))
155151, 154syl 17 . 2 (𝜑 → (𝐻(1Walks‘𝑆)𝑄 ↔ (𝐻 ∈ Word dom (iEdg‘𝑆) ∧ 𝑄:(0...(#‘𝐻))⟶(Vtx‘𝑆) ∧ ∀𝑥 ∈ (0..^(#‘𝐻))if-((𝑄𝑥) = (𝑄‘(𝑥 + 1)), ((iEdg‘𝑆)‘(𝐻𝑥)) = {(𝑄𝑥)}, {(𝑄𝑥), (𝑄‘(𝑥 + 1))} ⊆ ((iEdg‘𝑆)‘(𝐻𝑥))))))
15657, 75, 150, 155mpbir3and 1238 1 (𝜑𝐻(1Walks‘𝑆)𝑄)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  if-wif 1006  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  {csn 4125  {cpr 4127   class class class wbr 4583  dom cdm 5038  cres 5040  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  0cc0 9815  1c1 9816   + caddc 9818  cuz 11563  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146  Vtxcvtx 25673  iEdgciedg 25674  1Walksc1wlks 40796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-substr 13158  df-1wlks 40800
This theorem is referenced by:  trlres  40908  eupthres  41383
  Copyright terms: Public domain W3C validator