Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1wlk1walk Structured version   Visualization version   GIF version

Theorem 1wlk1walk 40843
 Description: A 1-walk is a 1-walk "on the edge level" according to Aksoy et al. (Contributed by AV, 30-Dec-2020.)
Hypothesis
Ref Expression
1wlk1walk.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
1wlk1walk (𝐹(1Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(#‘𝐹))1 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑃,𝑘
Allowed substitution hint:   𝐼(𝑘)

Proof of Theorem 1wlk1walk
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wlkv 40815 . 2 (𝐹(1Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2610 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2610 . . . 4 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3is1wlk 40813 . . 3 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))))))
5 fvex 6113 . . . . . . 7 (𝐼‘(𝐹‘(𝑘 − 1))) ∈ V
65inex1 4727 . . . . . 6 ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ∈ V
7 fzo0ss1 12367 . . . . . . . . . . . 12 (1..^(#‘𝐹)) ⊆ (0..^(#‘𝐹))
87sseli 3564 . . . . . . . . . . 11 (𝑘 ∈ (1..^(#‘𝐹)) → 𝑘 ∈ (0..^(#‘𝐹)))
9 1wlkslem1 40809 . . . . . . . . . . . 12 (𝑖 = 𝑘 → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ↔ if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
109rspcv 3278 . . . . . . . . . . 11 (𝑘 ∈ (0..^(#‘𝐹)) → (∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
118, 10syl 17 . . . . . . . . . 10 (𝑘 ∈ (1..^(#‘𝐹)) → (∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
1211imp 444 . . . . . . . . 9 ((𝑘 ∈ (1..^(#‘𝐹)) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))
13 elfzofz 12354 . . . . . . . . . . 11 (𝑘 ∈ (1..^(#‘𝐹)) → 𝑘 ∈ (1...(#‘𝐹)))
14 fz1fzo0m1 12383 . . . . . . . . . . 11 (𝑘 ∈ (1...(#‘𝐹)) → (𝑘 − 1) ∈ (0..^(#‘𝐹)))
15 1wlkslem1 40809 . . . . . . . . . . . 12 (𝑖 = (𝑘 − 1) → (if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
1615rspcv 3278 . . . . . . . . . . 11 ((𝑘 − 1) ∈ (0..^(#‘𝐹)) → (∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
1713, 14, 163syl 18 . . . . . . . . . 10 (𝑘 ∈ (1..^(#‘𝐹)) → (∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
1817imp 444 . . . . . . . . 9 ((𝑘 ∈ (1..^(#‘𝐹)) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))))
19 df-ifp 1007 . . . . . . . . . . . 12 (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
20 elfzoelz 12339 . . . . . . . . . . . . . . 15 (𝑘 ∈ (1..^(#‘𝐹)) → 𝑘 ∈ ℤ)
21 zcn 11259 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
22 eqidd 2611 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℂ → (𝑘 − 1) = (𝑘 − 1))
23 npcan1 10334 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℂ → ((𝑘 − 1) + 1) = 𝑘)
24 1wlkslem2 40810 . . . . . . . . . . . . . . . 16 (((𝑘 − 1) = (𝑘 − 1) ∧ ((𝑘 − 1) + 1) = 𝑘) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
2522, 23, 24syl2anc 691 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℂ → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
2620, 21, 253syl 18 . . . . . . . . . . . . . 14 (𝑘 ∈ (1..^(#‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
27 df-ifp 1007 . . . . . . . . . . . . . . 15 (if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) ∨ (¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))))
28 sneq 4135 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → {(𝑃‘(𝑘 − 1))} = {(𝑃𝑘)})
2928eqeq2d 2620 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))} ↔ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)}))
30 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃𝑘) ∈ V
3130snid 4155 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑃𝑘) ∈ {(𝑃𝑘)}
32 1wlk1walk.i . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 𝐼 = (iEdg‘𝐺)
3332fveq1i 6104 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐼‘(𝐹‘(𝑘 − 1))) = ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))
3433eleq2i 2680 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))
35 eleq2 2677 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
3634, 35syl5bb 271 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
3731, 36mpbiri 247 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → (𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))))
38 eleq2 2677 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
3931, 38mpbiri 247 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)))
4032fveq1i 6104 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐼‘(𝐹𝑘)) = ((iEdg‘𝐺)‘(𝐹𝑘))
4139, 40syl6eleqr 2699 . . . . . . . . . . . . . . . . . . . . . . . 24 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
4237, 41anim12i 588 . . . . . . . . . . . . . . . . . . . . . . 23 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
4342ex 449 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
4429, 43syl6bi 242 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))} → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
4544imp 444 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
4645com12 32 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
4746adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
48 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃‘(𝑘 + 1)) ∈ V
4930, 48prss 4291 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))
5032eqcomi 2619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (iEdg‘𝐺) = 𝐼
5150fveq1i 6104 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((iEdg‘𝐺)‘(𝐹𝑘)) = (𝐼‘(𝐹𝑘))
5251eleq2i 2680 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5352biimpi 205 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5453adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5549, 54sylbir 224 . . . . . . . . . . . . . . . . . . . . . . . 24 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
5637, 55anim12i 588 . . . . . . . . . . . . . . . . . . . . . . 23 ((((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
5756ex 449 . . . . . . . . . . . . . . . . . . . . . 22 (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃𝑘)} → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
5829, 57syl6bi 242 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃‘(𝑘 − 1)) = (𝑃𝑘) → (((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))} → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
5958imp 444 . . . . . . . . . . . . . . . . . . . 20 (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6059com12 32 . . . . . . . . . . . . . . . . . . 19 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6160adantl 481 . . . . . . . . . . . . . . . . . 18 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6247, 61jaoi 393 . . . . . . . . . . . . . . . . 17 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
6362com12 32 . . . . . . . . . . . . . . . 16 (((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
64 fvex 6113 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃‘(𝑘 − 1)) ∈ V
6564, 30prss 4291 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃‘(𝑘 − 1)) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) ↔ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))
6650fveq1i 6104 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = (𝐼‘(𝐹‘(𝑘 − 1)))
6766eleq2i 2680 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ↔ (𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))))
6867biimpi 205 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → (𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))))
6940eleq2i 2680 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)))
7069, 38syl5bb 271 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)) ↔ (𝑃𝑘) ∈ {(𝑃𝑘)}))
7131, 70mpbiri 247 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))
7268, 71anim12i 588 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
7372ex 449 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7473adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑃‘(𝑘 − 1)) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7565, 74sylbir 224 . . . . . . . . . . . . . . . . . . . . 21 ({(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7675adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7776com12 32 . . . . . . . . . . . . . . . . . . 19 (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7877adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
7967, 52anbi12i 729 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
8079biimpi 205 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
8180ex 449 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8281adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑃‘(𝑘 − 1)) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8365, 82sylbir 224 . . . . . . . . . . . . . . . . . . . . . . 23 ({(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8483adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8584com12 32 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8685adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑘) ∈ ((iEdg‘𝐺)‘(𝐹𝑘)) ∧ (𝑃‘(𝑘 + 1)) ∈ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8749, 86sylbir 224 . . . . . . . . . . . . . . . . . . 19 ({(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8887adantl 481 . . . . . . . . . . . . . . . . . 18 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
8978, 88jaoi 393 . . . . . . . . . . . . . . . . 17 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9089com12 32 . . . . . . . . . . . . . . . 16 ((¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9163, 90jaoi 393 . . . . . . . . . . . . . . 15 ((((𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}) ∨ (¬ (𝑃‘(𝑘 − 1)) = (𝑃𝑘) ∧ {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9227, 91sylbi 206 . . . . . . . . . . . . . 14 (if-((𝑃‘(𝑘 − 1)) = (𝑃𝑘), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃𝑘)} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘)))))
9326, 92syl6bi 242 . . . . . . . . . . . . 13 (𝑘 ∈ (1..^(#‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9493com3r 85 . . . . . . . . . . . 12 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (𝑘 ∈ (1..^(#‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9519, 94sylbi 206 . . . . . . . . . . 11 (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (𝑘 ∈ (1..^(#‘𝐹)) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9695com12 32 . . . . . . . . . 10 (𝑘 ∈ (1..^(#‘𝐹)) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9796adantr 480 . . . . . . . . 9 ((𝑘 ∈ (1..^(#‘𝐹)) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (if-((𝑃‘(𝑘 − 1)) = (𝑃‘((𝑘 − 1) + 1)), ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) = {(𝑃‘(𝑘 − 1))}, {(𝑃‘(𝑘 − 1)), (𝑃‘((𝑘 − 1) + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))))
9812, 18, 97mp2d 47 . . . . . . . 8 ((𝑘 ∈ (1..^(#‘𝐹)) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
9998ancoms 468 . . . . . . 7 ((∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → ((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))))
100 inelcm 3984 . . . . . . 7 (((𝑃𝑘) ∈ (𝐼‘(𝐹‘(𝑘 − 1))) ∧ (𝑃𝑘) ∈ (𝐼‘(𝐹𝑘))) → ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ≠ ∅)
10199, 100syl 17 . . . . . 6 ((∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ≠ ∅)
102 hashge1 13039 . . . . . 6 ((((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ∈ V ∧ ((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))) ≠ ∅) → 1 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
1036, 101, 102sylancr 694 . . . . 5 ((∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) ∧ 𝑘 ∈ (1..^(#‘𝐹))) → 1 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
104103ralrimiva 2949 . . . 4 (∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖))) → ∀𝑘 ∈ (1..^(#‘𝐹))1 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
1051043ad2ant3 1077 . . 3 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(#‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑖 ∈ (0..^(#‘𝐹))if-((𝑃𝑖) = (𝑃‘(𝑖 + 1)), ((iEdg‘𝐺)‘(𝐹𝑖)) = {(𝑃𝑖)}, {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑖)))) → ∀𝑘 ∈ (1..^(#‘𝐹))1 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
1064, 105syl6bi 242 . 2 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(1Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(#‘𝐹))1 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘))))))
1071, 106mpcom 37 1 (𝐹(1Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(#‘𝐹))1 ≤ (#‘((𝐼‘(𝐹‘(𝑘 − 1))) ∩ (𝐼‘(𝐹𝑘)))))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∨ wo 382   ∧ wa 383  if-wif 1006   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  Vcvv 3173   ∩ cin 3539   ⊆ wss 3540  ∅c0 3874  {csn 4125  {cpr 4127   class class class wbr 4583  dom cdm 5038  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  0cc0 9815  1c1 9816   + caddc 9818   ≤ cle 9954   − cmin 10145  ℤcz 11254  ...cfz 12197  ..^cfzo 12334  #chash 12979  Word cword 13146  Vtxcvtx 25673  iEdgciedg 25674  1Walksc1wlks 40796 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-hash 12980  df-word 13154  df-1wlks 40800 This theorem is referenced by:  1wlk1ewlk  40844
 Copyright terms: Public domain W3C validator