Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem7 Structured version   Visualization version   GIF version

Theorem ipasslem7 27075
 Description: Lemma for ipassi 27080. Show that ((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)) is continuous on ℝ. (Contributed by NM, 23-Aug-2007.) (Revised by Mario Carneiro, 6-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem7.a 𝐴𝑋
ipasslem7.b 𝐵𝑋
ipasslem7.f 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))
ipasslem7.j 𝐽 = (topGen‘ran (,))
ipasslem7.k 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
ipasslem7 𝐹 ∈ (𝐽 Cn 𝐾)
Distinct variable groups:   𝑤,𝐵   𝑤,𝐾   𝑤,𝑃   𝑤,𝑆   𝑤,𝑈   𝑤,𝑋   𝑤,𝐴
Allowed substitution hints:   𝐹(𝑤)   𝐺(𝑤)   𝐽(𝑤)

Proof of Theorem ipasslem7
StepHypRef Expression
1 ipasslem7.f . 2 𝐹 = (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵))))
2 ipasslem7.j . . . . 5 𝐽 = (topGen‘ran (,))
3 ipasslem7.k . . . . . 6 𝐾 = (TopOpen‘ℂfld)
43tgioo2 22414 . . . . 5 (topGen‘ran (,)) = (𝐾t ℝ)
52, 4eqtri 2632 . . . 4 𝐽 = (𝐾t ℝ)
63cnfldtopon 22396 . . . . 5 𝐾 ∈ (TopOn‘ℂ)
76a1i 11 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘ℂ))
8 ax-resscn 9872 . . . . 5 ℝ ⊆ ℂ
98a1i 11 . . . 4 (⊤ → ℝ ⊆ ℂ)
107cnmptid 21274 . . . . . . 7 (⊤ → (𝑤 ∈ ℂ ↦ 𝑤) ∈ (𝐾 Cn 𝐾))
11 ip1i.9 . . . . . . . . . . 11 𝑈 ∈ CPreHilOLD
1211phnvi 27055 . . . . . . . . . 10 𝑈 ∈ NrmCVec
13 ip1i.1 . . . . . . . . . . 11 𝑋 = (BaseSet‘𝑈)
14 eqid 2610 . . . . . . . . . . 11 (IndMet‘𝑈) = (IndMet‘𝑈)
1513, 14imsxmet 26931 . . . . . . . . . 10 (𝑈 ∈ NrmCVec → (IndMet‘𝑈) ∈ (∞Met‘𝑋))
1612, 15ax-mp 5 . . . . . . . . 9 (IndMet‘𝑈) ∈ (∞Met‘𝑋)
17 eqid 2610 . . . . . . . . . 10 (MetOpen‘(IndMet‘𝑈)) = (MetOpen‘(IndMet‘𝑈))
1817mopntopon 22054 . . . . . . . . 9 ((IndMet‘𝑈) ∈ (∞Met‘𝑋) → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋))
1916, 18mp1i 13 . . . . . . . 8 (⊤ → (MetOpen‘(IndMet‘𝑈)) ∈ (TopOn‘𝑋))
20 ipasslem7.a . . . . . . . . 9 𝐴𝑋
2120a1i 11 . . . . . . . 8 (⊤ → 𝐴𝑋)
227, 19, 21cnmptc 21275 . . . . . . 7 (⊤ → (𝑤 ∈ ℂ ↦ 𝐴) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈))))
23 ip1i.4 . . . . . . . . 9 𝑆 = ( ·𝑠OLD𝑈)
2414, 17, 23, 3smcn 26937 . . . . . . . 8 (𝑈 ∈ NrmCVec → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈))))
2512, 24mp1i 13 . . . . . . 7 (⊤ → 𝑆 ∈ ((𝐾 ×t (MetOpen‘(IndMet‘𝑈))) Cn (MetOpen‘(IndMet‘𝑈))))
267, 10, 22, 25cnmpt12f 21279 . . . . . 6 (⊤ → (𝑤 ∈ ℂ ↦ (𝑤𝑆𝐴)) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈))))
27 ipasslem7.b . . . . . . . 8 𝐵𝑋
2827a1i 11 . . . . . . 7 (⊤ → 𝐵𝑋)
297, 19, 28cnmptc 21275 . . . . . 6 (⊤ → (𝑤 ∈ ℂ ↦ 𝐵) ∈ (𝐾 Cn (MetOpen‘(IndMet‘𝑈))))
30 ip1i.7 . . . . . . . 8 𝑃 = (·𝑖OLD𝑈)
3130, 14, 17, 3dipcn 26959 . . . . . . 7 (𝑈 ∈ NrmCVec → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾))
3212, 31mp1i 13 . . . . . 6 (⊤ → 𝑃 ∈ (((MetOpen‘(IndMet‘𝑈)) ×t (MetOpen‘(IndMet‘𝑈))) Cn 𝐾))
337, 26, 29, 32cnmpt12f 21279 . . . . 5 (⊤ → (𝑤 ∈ ℂ ↦ ((𝑤𝑆𝐴)𝑃𝐵)) ∈ (𝐾 Cn 𝐾))
3413, 30dipcl 26951 . . . . . . . . 9 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
3512, 20, 27, 34mp3an 1416 . . . . . . . 8 (𝐴𝑃𝐵) ∈ ℂ
3635a1i 11 . . . . . . 7 (⊤ → (𝐴𝑃𝐵) ∈ ℂ)
377, 7, 36cnmptc 21275 . . . . . 6 (⊤ → (𝑤 ∈ ℂ ↦ (𝐴𝑃𝐵)) ∈ (𝐾 Cn 𝐾))
383mulcn 22478 . . . . . . 7 · ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
3938a1i 11 . . . . . 6 (⊤ → · ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
407, 10, 37, 39cnmpt12f 21279 . . . . 5 (⊤ → (𝑤 ∈ ℂ ↦ (𝑤 · (𝐴𝑃𝐵))) ∈ (𝐾 Cn 𝐾))
413subcn 22477 . . . . . 6 − ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
4241a1i 11 . . . . 5 (⊤ → − ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
437, 33, 40, 42cnmpt12f 21279 . . . 4 (⊤ → (𝑤 ∈ ℂ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐾 Cn 𝐾))
445, 7, 9, 43cnmpt1res 21289 . . 3 (⊤ → (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾))
4544trud 1484 . 2 (𝑤 ∈ ℝ ↦ (((𝑤𝑆𝐴)𝑃𝐵) − (𝑤 · (𝐴𝑃𝐵)))) ∈ (𝐽 Cn 𝐾)
461, 45eqeltri 2684 1 𝐹 ∈ (𝐽 Cn 𝐾)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1475  ⊤wtru 1476   ∈ wcel 1977   ⊆ wss 3540   ↦ cmpt 4643  ran crn 5039  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  ℝcr 9814   · cmul 9820   − cmin 10145  (,)cioo 12046   ↾t crest 15904  TopOpenctopn 15905  topGenctg 15921  ∞Metcxmt 19552  MetOpencmopn 19557  ℂfldccnfld 19567  TopOnctopon 20518   Cn ccn 20838   ×t ctx 21173  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  IndMetcims 26830  ·𝑖OLDcdip 26939  CPreHilOLDccphlo 27051 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-fi 8200  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-ioo 12050  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-rest 15906  df-topn 15907  df-0g 15925  df-gsum 15926  df-topgen 15927  df-pt 15928  df-prds 15931  df-xrs 15985  df-qtop 15990  df-imas 15991  df-xps 15993  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cn 20841  df-cnp 20842  df-tx 21175  df-hmeo 21368  df-xms 21935  df-ms 21936  df-tms 21937  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ims 26840  df-dip 26940  df-ph 27052 This theorem is referenced by:  ipasslem8  27076
 Copyright terms: Public domain W3C validator