Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hoiqssbllem3 Structured version   Visualization version   GIF version

Theorem hoiqssbllem3 39514
Description: A n-dimensional ball contains a non-empty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
Hypotheses
Ref Expression
hoiqssbllem3.x (𝜑𝑋 ∈ Fin)
hoiqssbllem3.n (𝜑𝑋 ≠ ∅)
hoiqssbllem3.y (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))
hoiqssbllem3.e (𝜑𝐸 ∈ ℝ+)
Assertion
Ref Expression
hoiqssbllem3 (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Distinct variable groups:   𝐸,𝑐,𝑑,𝑖   𝑋,𝑐,𝑑,𝑖   𝑌,𝑐,𝑑,𝑖   𝜑,𝑐,𝑑,𝑖

Proof of Theorem hoiqssbllem3
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 hoiqssbllem3.x . . . . . . 7 (𝜑𝑋 ∈ Fin)
2 qex 11676 . . . . . . . . 9 ℚ ∈ V
32inex1 4727 . . . . . . . 8 (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∈ V
43a1i 11 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∈ V)
5 hoiqssbllem3.y . . . . . . . . . . . . 13 (𝜑𝑌 ∈ (ℝ ↑𝑚 𝑋))
6 elmapi 7765 . . . . . . . . . . . . 13 (𝑌 ∈ (ℝ ↑𝑚 𝑋) → 𝑌:𝑋⟶ℝ)
75, 6syl 17 . . . . . . . . . . . 12 (𝜑𝑌:𝑋⟶ℝ)
87ffvelrnda 6267 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ)
9 hoiqssbllem3.e . . . . . . . . . . . . 13 (𝜑𝐸 ∈ ℝ+)
10 2rp 11713 . . . . . . . . . . . . . . 15 2 ∈ ℝ+
1110a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ+)
12 hoiqssbllem3.n . . . . . . . . . . . . . . . . 17 (𝜑𝑋 ≠ ∅)
13 hashnncl 13018 . . . . . . . . . . . . . . . . . 18 (𝑋 ∈ Fin → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
141, 13syl 17 . . . . . . . . . . . . . . . . 17 (𝜑 → ((#‘𝑋) ∈ ℕ ↔ 𝑋 ≠ ∅))
1512, 14mpbird 246 . . . . . . . . . . . . . . . 16 (𝜑 → (#‘𝑋) ∈ ℕ)
16 nnrp 11718 . . . . . . . . . . . . . . . 16 ((#‘𝑋) ∈ ℕ → (#‘𝑋) ∈ ℝ+)
1715, 16syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (#‘𝑋) ∈ ℝ+)
1817rpsqrtcld 13998 . . . . . . . . . . . . . 14 (𝜑 → (√‘(#‘𝑋)) ∈ ℝ+)
1911, 18rpmulcld 11764 . . . . . . . . . . . . 13 (𝜑 → (2 · (√‘(#‘𝑋))) ∈ ℝ+)
209, 19rpdivcld 11765 . . . . . . . . . . . 12 (𝜑 → (𝐸 / (2 · (√‘(#‘𝑋)))) ∈ ℝ+)
2120adantr 480 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(#‘𝑋)))) ∈ ℝ+)
228, 21ltsubrpd 11780 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) < (𝑌𝑖))
2321rpred 11748 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐸 / (2 · (√‘(#‘𝑋)))) ∈ ℝ)
248, 23resubcld 10337 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ)
2524, 8ltnled 10063 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) < (𝑌𝑖) ↔ ¬ (𝑌𝑖) ≤ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))))
2622, 25mpbid 221 . . . . . . . . 9 ((𝜑𝑖𝑋) → ¬ (𝑌𝑖) ≤ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))))
2724rexrd 9968 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ*)
288rexrd 9968 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝑌𝑖) ∈ ℝ*)
2927, 28qinioo 38609 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) = ∅ ↔ (𝑌𝑖) ≤ ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))))
3026, 29mtbird 314 . . . . . . . 8 ((𝜑𝑖𝑋) → ¬ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) = ∅)
3130neqned 2789 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ≠ ∅)
321, 4, 31choicefi 38387 . . . . . 6 (𝜑 → ∃𝑐(𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))))
33 simpl 472 . . . . . . . . . . . . 13 ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))) → 𝑐 Fn 𝑋)
34 nfra1 2925 . . . . . . . . . . . . . . 15 𝑖𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
35 rspa 2914 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))
36 elinel1 3761 . . . . . . . . . . . . . . . . 17 ((𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) → (𝑐𝑖) ∈ ℚ)
3735, 36syl 17 . . . . . . . . . . . . . . . 16 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ ℚ)
3837ex 449 . . . . . . . . . . . . . . 15 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) → (𝑖𝑋 → (𝑐𝑖) ∈ ℚ))
3934, 38ralrimi 2940 . . . . . . . . . . . . . 14 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) → ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ)
4039adantl 481 . . . . . . . . . . . . 13 ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))) → ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ)
4133, 40jca 553 . . . . . . . . . . . 12 ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))) → (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ))
4241adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))) → (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ))
43 ffnfv 6295 . . . . . . . . . . 11 (𝑐:𝑋⟶ℚ ↔ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ ℚ))
4442, 43sylibr 223 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))) → 𝑐:𝑋⟶ℚ)
452a1i 11 . . . . . . . . . . . 12 (𝜑 → ℚ ∈ V)
46 elmapg 7757 . . . . . . . . . . . 12 ((ℚ ∈ V ∧ 𝑋 ∈ Fin) → (𝑐 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑐:𝑋⟶ℚ))
4745, 1, 46syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝑐 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑐:𝑋⟶ℚ))
4847adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))) → (𝑐 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑐:𝑋⟶ℚ))
4944, 48mpbird 246 . . . . . . . . 9 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))) → 𝑐 ∈ (ℚ ↑𝑚 𝑋))
50 simprr 792 . . . . . . . . 9 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))) → ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))
5149, 50jca 553 . . . . . . . 8 ((𝜑 ∧ (𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))) → (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))))
5251ex 449 . . . . . . 7 (𝜑 → ((𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))) → (𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))))
5352eximdv 1833 . . . . . 6 (𝜑 → (∃𝑐(𝑐 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))) → ∃𝑐(𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))))
5432, 53mpd 15 . . . . 5 (𝜑 → ∃𝑐(𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))))
55 df-rex 2902 . . . . 5 (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ↔ ∃𝑐(𝑐 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))))
5654, 55sylibr 223 . . . 4 (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))))
572inex1 4727 . . . . . . . 8 (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ∈ V
5857a1i 11 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ∈ V)
598, 21ltaddrpd 11781 . . . . . . . . . 10 ((𝜑𝑖𝑋) → (𝑌𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))
608, 23readdcld 9948 . . . . . . . . . . 11 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ)
618, 60ltnled 10063 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) < ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ↔ ¬ ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ≤ (𝑌𝑖)))
6259, 61mpbid 221 . . . . . . . . 9 ((𝜑𝑖𝑋) → ¬ ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ≤ (𝑌𝑖))
6360rexrd 9968 . . . . . . . . . 10 ((𝜑𝑖𝑋) → ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ∈ ℝ*)
6428, 63qinioo 38609 . . . . . . . . 9 ((𝜑𝑖𝑋) → ((ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) = ∅ ↔ ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) ≤ (𝑌𝑖)))
6562, 64mtbird 314 . . . . . . . 8 ((𝜑𝑖𝑋) → ¬ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) = ∅)
6665neqned 2789 . . . . . . 7 ((𝜑𝑖𝑋) → (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ≠ ∅)
671, 58, 66choicefi 38387 . . . . . 6 (𝜑 → ∃𝑑(𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
68 simpl 472 . . . . . . . . . . . . 13 ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → 𝑑 Fn 𝑋)
69 nfra1 2925 . . . . . . . . . . . . . . 15 𝑖𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
70 rspa 2914 . . . . . . . . . . . . . . . . 17 ((∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
71 elinel1 3761 . . . . . . . . . . . . . . . . 17 ((𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) → (𝑑𝑖) ∈ ℚ)
7270, 71syl 17 . . . . . . . . . . . . . . . 16 ((∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ℚ)
7372ex 449 . . . . . . . . . . . . . . 15 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) → (𝑖𝑋 → (𝑑𝑖) ∈ ℚ))
7469, 73ralrimi 2940 . . . . . . . . . . . . . 14 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) → ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ)
7574adantl 481 . . . . . . . . . . . . 13 ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ)
7668, 75jca 553 . . . . . . . . . . . 12 ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ))
7776adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ))
78 ffnfv 6295 . . . . . . . . . . 11 (𝑑:𝑋⟶ℚ ↔ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ ℚ))
7977, 78sylibr 223 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑑:𝑋⟶ℚ)
80 elmapg 7757 . . . . . . . . . . . 12 ((ℚ ∈ V ∧ 𝑋 ∈ Fin) → (𝑑 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑑:𝑋⟶ℚ))
8145, 1, 80syl2anc 691 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑑:𝑋⟶ℚ))
8281adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → (𝑑 ∈ (ℚ ↑𝑚 𝑋) ↔ 𝑑:𝑋⟶ℚ))
8379, 82mpbird 246 . . . . . . . . 9 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑑 ∈ (ℚ ↑𝑚 𝑋))
84 simprr 792 . . . . . . . . 9 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
8583, 84jca 553 . . . . . . . 8 ((𝜑 ∧ (𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → (𝑑 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
8685ex 449 . . . . . . 7 (𝜑 → ((𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → (𝑑 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))))
8786eximdv 1833 . . . . . 6 (𝜑 → (∃𝑑(𝑑 Fn 𝑋 ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → ∃𝑑(𝑑 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))))
8867, 87mpd 15 . . . . 5 (𝜑 → ∃𝑑(𝑑 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
89 df-rex 2902 . . . . 5 (∃𝑑 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ↔ ∃𝑑(𝑑 ∈ (ℚ ↑𝑚 𝑋) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
9088, 89sylibr 223 . . . 4 (𝜑 → ∃𝑑 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
9156, 90jca 553 . . 3 (𝜑 → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∃𝑑 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
92 reeanv 3086 . . 3 (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) ↔ (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∃𝑑 ∈ (ℚ ↑𝑚 𝑋)∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
9391, 92sylibr 223 . 2 (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
94 nfv 1830 . . . . . . . 8 𝑖((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋))
9534, 69nfan 1816 . . . . . . . 8 𝑖(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
9694, 95nfan 1816 . . . . . . 7 𝑖(((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
971ad3antrrr 762 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑋 ∈ Fin)
9812ad3antrrr 762 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑋 ≠ ∅)
995ad3antrrr 762 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑌 ∈ (ℝ ↑𝑚 𝑋))
100 elmapi 7765 . . . . . . . . . 10 (𝑐 ∈ (ℚ ↑𝑚 𝑋) → 𝑐:𝑋⟶ℚ)
101 qssre 11674 . . . . . . . . . . 11 ℚ ⊆ ℝ
102101a1i 11 . . . . . . . . . 10 (𝑐 ∈ (ℚ ↑𝑚 𝑋) → ℚ ⊆ ℝ)
103100, 102fssd 5970 . . . . . . . . 9 (𝑐 ∈ (ℚ ↑𝑚 𝑋) → 𝑐:𝑋⟶ℝ)
104103adantl 481 . . . . . . . 8 ((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) → 𝑐:𝑋⟶ℝ)
105104ad2antrr 758 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑐:𝑋⟶ℝ)
106 elmapi 7765 . . . . . . . . 9 (𝑑 ∈ (ℚ ↑𝑚 𝑋) → 𝑑:𝑋⟶ℚ)
107101a1i 11 . . . . . . . . 9 (𝑑 ∈ (ℚ ↑𝑚 𝑋) → ℚ ⊆ ℝ)
108106, 107fssd 5970 . . . . . . . 8 (𝑑 ∈ (ℚ ↑𝑚 𝑋) → 𝑑:𝑋⟶ℝ)
109108ad2antlr 759 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑑:𝑋⟶ℝ)
1109ad3antrrr 762 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝐸 ∈ ℝ+)
11135elin2d 3765 . . . . . . . . 9 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
112111adantlr 747 . . . . . . . 8 (((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
113112adantll 746 . . . . . . 7 (((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
11470elin2d 3765 . . . . . . . . 9 ((∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
115114adantll 746 . . . . . . . 8 (((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
116115adantll 746 . . . . . . 7 (((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
11796, 97, 98, 99, 105, 109, 110, 113, 116hoiqssbllem1 39512 . . . . . 6 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)))
118 simpl 472 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → ((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)))
119 fveq2 6103 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝑐𝑖) = (𝑐𝑘))
120 fveq2 6103 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → (𝑌𝑖) = (𝑌𝑘))
121120oveq1d 6564 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → ((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋))))) = ((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋))))))
122121, 120oveq12d 6567 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)) = (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘)))
123122ineq2d 3776 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) = (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))))
124119, 123eleq12d 2682 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ↔ (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘)))))
125124cbvralv 3147 . . . . . . . . . . 11 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ↔ ∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))))
126125biimpi 205 . . . . . . . . . 10 (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) → ∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))))
127126adantr 480 . . . . . . . . 9 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → ∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))))
128 fveq2 6103 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (𝑑𝑖) = (𝑑𝑘))
129120oveq1d 6564 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → ((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))) = ((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))
130120, 129oveq12d 6567 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))) = ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
131130ineq2d 3776 . . . . . . . . . . . . 13 (𝑖 = 𝑘 → (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) = (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
132128, 131eleq12d 2682 . . . . . . . . . . . 12 (𝑖 = 𝑘 → ((𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ↔ (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
133132cbvralv 3147 . . . . . . . . . . 11 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ↔ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
134133biimpi 205 . . . . . . . . . 10 (∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))) → ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
135134adantl 481 . . . . . . . . 9 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))
136127, 135jca 553 . . . . . . . 8 ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
137136adantl 481 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
138 nfv 1830 . . . . . . . 8 𝑖(((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋)))))))))
1391ad3antrrr 762 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑋 ∈ Fin)
14012ad3antrrr 762 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑋 ≠ ∅)
1415ad3antrrr 762 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑌 ∈ (ℝ ↑𝑚 𝑋))
142104ad2antrr 758 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑐:𝑋⟶ℝ)
143108ad2antlr 759 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝑑:𝑋⟶ℝ)
1449ad3antrrr 762 . . . . . . . 8 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → 𝐸 ∈ ℝ+)
145125, 111sylanbr 489 . . . . . . . . . 10 ((∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
146145adantlr 747 . . . . . . . . 9 (((∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
147146adantll 746 . . . . . . . 8 (((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑐𝑖) ∈ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖)))
148133, 114sylanbr 489 . . . . . . . . . 10 ((∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
149148adantll 746 . . . . . . . . 9 (((∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
150149adantll 746 . . . . . . . 8 (((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) ∧ 𝑖𝑋) → (𝑑𝑖) ∈ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))
151138, 139, 140, 141, 142, 143, 144, 147, 150hoiqssbllem2 39513 . . . . . . 7 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑘𝑋 (𝑐𝑘) ∈ (ℚ ∩ (((𝑌𝑘) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑘))) ∧ ∀𝑘𝑋 (𝑑𝑘) ∈ (ℚ ∩ ((𝑌𝑘)(,)((𝑌𝑘) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
152118, 137, 151syl2anc 691 . . . . . 6 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))
153117, 152jca 553 . . . . 5 ((((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) ∧ (∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋))))))))) → (𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
154153ex 449 . . . 4 (((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) ∧ 𝑑 ∈ (ℚ ↑𝑚 𝑋)) → ((∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → (𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))))
155154reximdva 3000 . . 3 ((𝜑𝑐 ∈ (ℚ ↑𝑚 𝑋)) → (∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → ∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))))
156155reximdva 3000 . 2 (𝜑 → (∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(∀𝑖𝑋 (𝑐𝑖) ∈ (ℚ ∩ (((𝑌𝑖) − (𝐸 / (2 · (√‘(#‘𝑋)))))(,)(𝑌𝑖))) ∧ ∀𝑖𝑋 (𝑑𝑖) ∈ (ℚ ∩ ((𝑌𝑖)(,)((𝑌𝑖) + (𝐸 / (2 · (√‘(#‘𝑋)))))))) → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸))))
15793, 156mpd 15 1 (𝜑 → ∃𝑐 ∈ (ℚ ↑𝑚 𝑋)∃𝑑 ∈ (ℚ ↑𝑚 𝑋)(𝑌X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ∧ X𝑖𝑋 ((𝑐𝑖)[,)(𝑑𝑖)) ⊆ (𝑌(ball‘(dist‘(ℝ^‘𝑋)))𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cin 3539  wss 3540  c0 3874   class class class wbr 4583   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑚 cmap 7744  Xcixp 7794  Fincfn 7841  cr 9814   + caddc 9818   · cmul 9820   < clt 9953  cle 9954  cmin 10145   / cdiv 10563  cn 10897  2c2 10947  cq 11664  +crp 11708  (,)cioo 12046  [,)cico 12048  #chash 12979  csqrt 13821  distcds 15777  ballcbl 19554  ℝ^crrx 22979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-field 18573  df-subrg 18601  df-staf 18668  df-srng 18669  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-cnfld 19568  df-refld 19770  df-dsmm 19895  df-frlm 19910  df-nm 22197  df-tng 22199  df-tch 22777  df-rrx 22981
This theorem is referenced by:  hoiqssbl  39515
  Copyright terms: Public domain W3C validator